

Improvements on Usage of State Estimation In Load Dispatch Centers In India

JUNE - 2015

Revision History

Revision	Author	Date	Remarks
Rev0	NLDC, POSOCO	17-02-2015	Initial version
Rev1 NLDC, POSOCO		24-06-2015	Revised version

Table of Contents

LIST (OF TABLES	5		
LIST	LIST OF FIGURES			
LIST	DF ACRONYMS	8		
EXEC	UTIVE SUMMARY	11		
1.	INTRODUCTION	14		
2.	NEED FOR STATE ESTIMATION	16		
2.3	1 COMPLEX POWER SYSTEM	16		
2.2	2 Security and reliability of Grid	17		
2.3	3 CONTINGENCY ANALYSIS FOR (N-1) SECURE OPERATION	21		
2.4	4 Multi-vendor system in India	23		
2.5	5 SCADA Vs State Estimator	25		
3.	STEPS INVOLVED IN STATE ESTIMATION	27		
<u>م</u>	1 System Modeling	28		
3		30		
3:	3 Orservariuty analysis	32		
3.	1 Use of Pseudo measurements to attain orservarii ity	32		
ן איי	5 WEIGHTED LEAST SOLIARE ALGORITHM	33		
3.6	5 PARAMETERS FOR STATE ESTIMATION	34		
2.		34		
3.9	RAD DATA DROCESSING	34		
3.0 2.0		38		
ן זי		<u>4</u> 2		
ן זי		42		
4.	FACTORS AFFECTING STATE ESTIMATOR OUTPUT IN INDIA	43		
4.3	1 TOPOLOGY ERRORS	43		
4.2	2 Observability of the Network	46		
4.3	3 Equipment Parameters Errors	47		
4.4	DIFFERENT SIGN CONVENTIONS OF ANALOGS	47		
4.5	5 ANALOG DATA ERRORS	48		
4.6	5 IMPACT OF INCORRECT MODEL	49		
5.	SUGGESTIONS FOR TUNING OF STATE ESTIMATOR	50		
5.3	1 TOPOLOGY CORRECTION	50		
5.2	2 Adding Pseudo measurements	54		
5.3	3 PARAMETERS VERIFICATION	55		
5.4	4 RESIDUAL CHECK OF MEASUREMENTS	56		
5.5	5 ITERATIONS CHECK FOR MEASUREMENTS	56		
5.6	5 ACCURACY CLASS ASSIGNMENTS	57		
5.7	7 Bus Measurement Mismatch	58		
5.8	3 External Network Modeling	58		
5.9	9 INSERTING CALCULATED VALUES ON NON-MEASURED LOADS	59		

6.	SPECIAL CASES OF MODELING	59
6	.1 Units of Pump Storage plants	59
6	.2 INTER-AREA TRUNCATED POINTS	60
6	.3 FSC AND TCSC	60
6	.4 HVDC LINES	61
6	.5 MODELING OF LINE IN CASE OF A LINE REACTOR ASSOCIATED WITH IT	61
7.	FACTORS TO IMPROVE USAGE OF STATE ESTIMATION	63
8.	PRESENT STATUS OF THE STATE ESTIMATOR AT ALL LDCS	63
9.	SUGGESTIONS ON VARIOUS ISSUES	63
9	.1 TRUNCATION LEVEL OF NETWORK	63
9	.2 LOAD AND INJECTION AT TRUNCATED POINTS	64
9	.3 PUMP STORAGE PLANTS	65
9	.4 FSC/TCSC MODELING	66
9	.5 HVDC Modeling	66
9	.6 TUNING TOOLS	69
9	.7 LOAD SCHEDULING FOR PSEUDO MEASUREMENTS	70
9	.8 STATE ESTIMATOR VALIDATION TOOLS	70
10.	COMMON MYTHS	70
1	0.1 SE IS NOT A LOAD-FLOW ALGORITHM	71
1	0.2 SE DOES NOT USE FREQUENCY DATA	71
1	0.3 SE DOES NOT ESTIMATE BRANCH FLOWS DIRECTLY	71
1	0.4 NO RTU/SAS DATA DOES NOT MEAN THAT SE WILL NOT RUN	71
11.	PROPOSED ACTION ITEMS	72
APP	ENDIX 1	
SUN	IMARY OF DISCUSSIONS OF MEETINGS AT DIFFERENT RLDCS DURING DECEMBER 2014 – JANUA	٩RY
201	5	74
APP	ENDIX 2	
LIST	OF PARTICIPANTS	95
APP	ENDIX 3	
LIST	OF RTUS AT EACH RLDCS AND NLDC	103
APP	ENDIX 4	
USE	FUL REFERENCES FOR SE	160

List of Tables

Table 1: Reporting of RTUs (or SAS) in LDCs	. 14
Table 2: Location of Main and Back-up Control Centers in India	. 25
Table 3: Objective, Input and Output of Topology Processing	. 30
Table 4: Errors in digital status and its impacts on State Estimation	. 44
Table 5: Standard convention for 1-bit and 2-bit status to be used	. 45
Table 6: Errors in other data and its impacts on State Estimation	. 47
Table 7: Sign convention of analog data in RLDCs	. 48
Table 8: Impact of incorrect analog data on state estimation	. 49
Table 9: Ambiguous situation in digital data	. 52
Table 10: Judgment basis to correct digital data	. 53
Table 11: Modeling of load and generation at Inter-area truncated points	. 60
Table 12: Modeling of load only at Inter-area truncated points	. 60
Table 13: Truncation level for SE at various LDCs	. 64
Table 14: Modeling of Load at truncated points for SE	. 65
Table 15: Modeling of Load and generator at truncated points for SE	. 65
Table 16: Modeling of pump units	. 66
Table 17: Use of tuning tools	. 69

List of Figures

Figure 1: Locations of Load Despatch Centers in India	15
Figure 2: Expansion of Indian Power system	16
Figure 3: Increasing complexity in Load Despatch	17
Figure 4: Security Levels of grid operation	18
Figure 5: Base-case generation from State Estimation process	20
Figure 6: Contingency Analysis – Flow Chart	21
Figure 7: Processing approach	22
Figure 8: Vendor distribution of SCADA systems after up-gradation project	25
Figure 9: Inputs to State Estimation process	26
Figure 10: Real-Time snapshot containing SCADA & Estimated values	27
Figure 11: Common Bus diagram showing state variables	28
Figure 12: Substation bus arrangement	29
Figure 13: Truncation of network at 400kV and above voltage level at NLDC	29
Figure 14: Mapping of real-time ICT data at truncated loads at NLDC	30
Figure 15: Total system with status of switching devices obtained from SCADA system 3	31
Figure 16: Output of Topology Processor after filtering dead components	31
Figure 17: Network with some unobservable part	32
Figure 18: Observability flow chart of a Network	32
Figure 19: Parameters for State Estimation	34
Figure 20: Bad data detection indication in SCADA display	35
Figure 21: Network with Bad data	36
Figure 22: Bad data identification and Bad data suppression	36
Figure 23: List of Anomalous data	37
Figure 24: Final Estimated result of the Network	37
Figure 25: χ^2 Probability Density Function	39
Figure 26: Output of state Estimation process	43
Figure 27: Digital data acquisition	44
Figure 28: Digital Mapping of database in ".csv" files for GE system in WRLDC and SRLD	C.
	46
Figure 29: Non-observability of a Network	46
Figure 30: Two cases of sign convention for import/export of power	48
Figure 31: Analog Mapping of database in".csv" files for GE system in WRLDC and SRLD	С
	49
Figure 32: Double main bus with wrong isolator connectivity	50
Figure 33: Network before Topology Correction	51
Figure 34: Network after Topology correction	51
Figure 35: Topology correction	52
Figure 36: Topology Estimation in Alstom system at NLDC	53
Figure 37: Coherency warnings for digital data	54
Figure 38: Calculation of Pseudo measurements for Loads	55

Figure 39: Online editing of equipment's parameters	. 55
Figure 40: Residual check of measurements	. 56
Figure 41: Iterations check of measurements	. 57
Figure 42: Accuracy class assignments of measurements	. 57
Figure 43: Bus measurement mismatch	. 58
Figure 44: Inserting calculated values on non-measured loads	. 59
Figure 45: Specifying the Unit MW limits for units of pump storage plants	. 59
Figure 46: Modeling of FSC in series with the line	. 61
Figure 47: Snapshot of two parallel lines with different MVAr measurements	. 61
Figure 48: Modeling comparison with ZBR	. 62
Figure 49: Snapshot of Bus Summary in Alstom system with modeling of ZBR	. 62
Figure 50: Modeling of FSC as a line segment in series with the line	. 66
Figure 51: Modeling at NLDC for Mundra-Mahendragarh HVDC Bi-pole	. 67
Figure 52: Modeling at NLDC for Vindhyachal HVDC B/B	. 68
Figure 53: Modeling at NLDC for Sasaram HVDC B/B	. 69
Figure 54: ERCOT State Estimator Assessment Tool	. 70
Figure 55: Comparison of State Estimator and Load-Flow	. 71

List of Acronyms

A AC ATC	Alternating Current Available Transfer Capacity
C CEA CERC CMR	Central Electricity Authority Central Electricity Regulatory Commission Contact Multiplication Relays
D DIC	Designated ISTS Customers
E EMS	Energy Management System
F FOLD FSC	Forum of Load Despatchers Fixed Series Compensation
H HVDC	High Voltage Direct Current
I IA ICT IEEE IEGC	Implementing Agency Inter Connecting Transformers Institute of Electrical and Electronics Engineers Indian Electricity Grid Code
K KV	Kilo Volt
L LDC	Load Despatch Center
M MVAR MW	Mega Var Mega Watt
P PDF PES PMU PNA	Probability Density Function Power and Energy Society Phasor Measurement Unit Power Network Analysis

POSOCO	Power System Operation Corporation Limited
POWERGRID	Power Grid Corporation of India Limited
R RAP RAS REC RLDC RRF RTU	Remedial Action Plan Remedial Action Schemes Renewable Energy Certification Regional Load Despatch Center Renewable Regulatory Fund Remote Terminal Unit
SAS	Substation Automation System
SAT	Site Acceptance Test
SCADA	Supervisory Control and Data Acquisition
SE	State Estimation
SERC	State Electricity Regulatory Commission
SLDC	State Load Despatch Center
SPS	Special Protection Schemes
T TCSC TRM TTC U	Thyristor Controlled Series Compensation Transmission Reliability Margin Total Transfer Capacity
ULDC	Unified Load Despatch and Communication
URTDSM	Unified Real Time Dynamic State Measurement
Z ZBR	Zero Impedance Branch

Disclaimer

This document is an attempt to compile various concepts and practices related to State Estimator in Load Despatch Centers of Indian Power System. The compilation is intended for discussion purposes only. The document is not for commercial sale.

Copyright Information

This report has been compiled by POSOCO and is a result of contribution in some or other form of many experts, engineers, power system professionals. Hence, this report is being published for the benefit of power system fraternity. Information in this report can be used without obtaining the permission of Power System Operation Corporation. However, the material used from this report should be duly acknowledged by way of citing the name of the report, publishing month and name of Power System Operation Corporation.

EXECUTIVE SUMMARY

Indian power system is one of the largest Power System Networks in the world. It has installed capacity of about 245 GW. Indian power system has complex transmission network and many cross border connections. It is monitored by a multi-level integrated Supervisory Control & Data Acquisition (SCADA)/ Energy Management System (EMS) installed at many control centers dispersed all over India. SCADA/EMS of National control center is integrated with SCADA/EMS systems of five regional control centers. SCADA/EMS systems of regional control centers in turn are integrated with SCADA/EMS systems of lower 35 state control centers.

It is important to use all real-time tools to help the operator in operating the grid in a highly secure and reliable manner. An exercise was taken up by Power System Operation Corporation Limited (POSOCO) with an objective of improving the usage of State Estimation in Load Despatch Centers in India. In this process it has been interacting with experts both in India and abroad with the objective of learning and making continuous improvement. Dr. NDR Sarma, who works as Principal Engineer at Electric Reliability Council of Texas, Inc., USA visited India to attend the 2014 National Power Systems Conference at Guwahati. Dr. NDR Sarma is a renowned expert in State Estimation and EMS areas. He recently led an IEEE Task Force on State Estimation Concepts and Terminology and currently heading an IEEE Task Force of Contingency Analysis. During his visit to India during Dec'14-Jan'15, he visited all the Regional Load Dispatch Centers of POSOCO and had two day sessions at each location with all the engineers of RLDCs and respective SLDCs on basics of State Estimation and suggested methods to improve usage of State Estimation in LDCs.

Key observations in the initial study are summarized as follows:

- a) State Estimation is available along with the EMS package at NLDC, RLDCs and SLDCs. However, there are some issues with regard to getting proper telemetry from all the substations which has impact on successful state estimation. It is a well known fact that 'Not using State Estimation' can lead to 'poor visualization and Situational Awareness which can be catastrophic under alert/emergency conditions in the grid.
- b) There is limited awareness on effective use and tuning of State Estimation and other EMS tools for engineers at RLDCs and SLDCs.
- c) There is need to relook at the staff requirements and enhance the EMS teams with more engineers for effective usage of EMS tools at all LDCs.
- d) Effective regulation and enforcement at both national level and state level with regard to availability of required telemetry for SCADA system is of prime importance. Availability of SCADA and quick restoration of data (in case it is not available), is the key input for effective running of State Estimation and other EMS tools at RLDCs and SLDCs.
- e) There is a strong commitment from POSOCO management and engineers for effective use of State Estimation and EMS tools at NLDC, RLDCs and SLDCs. However to translate this commitment to reality would necessitate a good ecosystem in terms of a similar vision amongst all stakeholders which would provide the necessary encouragement to the EMS teams at control centers.

Based on the initial study, the following action items are suggested:

- a) Need to enhance the design and enforcement of regulations at both Central Electricity Regulatory Commission (CERC) and respective State Electricity Regulatory Commissions (SERCs) with regard to availability of required telemetry for SCADA system. Availability of SCADA and quick restoration of data (in case it is not available), is the key input for effective running of State Estimation and other EMS tools at RLDC and SLDCs. Running State Estimation and other EMS tools is essential for reliable and secure operation of the grid. 'Not using State Estimation' can lead to 'poor visualization and Situational Awareness which can be catastrophic under alert/emergency conditions in the grid.
- b) Initially the RTU/SAS connectivity analysis should be done to establish if sufficient measurements are available (system is observable) to perform state estimation. This should be accomplished within three months (after the release of this report). If the study indicates that there are no sufficient measurements then steps are to be taken to enhance the measurement set by adding more RTU/SAS to make the system observable. This study would also help to identify new location for placement of RTU/SAS. This is to be treated as very crucial for running state estimation and essential for establishing the current operating state of the system.
- c) Monthly reports on status of RTU/SAS should be published and circulated among concerned authorities for immediate action.
- d) A formal process of chasing the telemetry issues should be drafted, approved and followed. This is crucial in handling telemetry issues in timely manner. Appropriate regulatory requirements for proper availability of data should be defined and enforced. Non-compliance of data availability requirements should be taken seriously and defaulters shall be severely penalized for non-compliance.
- e) Monthly reports on SE results should be published and circulated with concerned authorities for immediate action. Reports shall include hourly/daily convergence details, residuals for line/unit/transformer/load details, etc. These reports shall also include the details of manual overrides of data done to get correct SE results. If required, the State Estimation Tool should be enhanced to have the capability of providing the summary of its performance such as hourly/daily convergence details, residuals for line/unit/transformer/load details, etc.
- f) A user group on State Estimation should be formed in order to develop team-building among the people working in this specialized field. Bi-monthly conference call shall be organized for this group.
- g) Review of staff requirements should be done in order to provide adequate man-power for EMS. Appropriate training shall be provided to all engineers.
- h) The availability of digital data and analog data is also important when we are talking about the synchrophasor measurements which would be coming under the Unified Real Time Dynamic State Measurement (URTDSM) project under execution by POWERGRID. Linear State Estimator being developed as an application would be useful only if the digital status and analog data from the Phasor Measurement Units (PMUs) is available. This would also serve as a back-up for the conventional State Estimation in the EMS System.
- i) World-wide research is on a Real Time State Estimator (instead of the 3 to 5 minute conventional EMS based SE) and Load Despatch Centers in India would not be able to achieve it if it doesn't catch up fast in the conventional EMS space.

j) POSOCO may provide Research Funds for academic institutions and do research in addressing the problem related to implementation of State Estimation in India. POSOCO may also consider organizing panel sessions focusing on Implementation of State Estimation in India at the National Power System Conferences in India. It may also consider organizing an International Symposium/conference focusing on State Estimation by inviting renowned experts across the world. This may serve as an opportunity for young engineers to interact with experts from all over the world.

1. INTRODUCTION

An effective on-line power system study ensures confidence in the grid operation and businesscritical electrical system. It is also subjected to wide range of operating conditions. Such a study is essential on real-time system to achieve the ultimate goal of power system operation viz, security, reliability, continuity and optimum cost. Power system operation in India is passing through a crucial phase of modernization and up-gradation. It can be said that extensive understanding of Indian power programs has enabled the conceptualization and implementation of state-of-art SCADA and EMS at a crucial time of power system operation. Real time power system tools are available at all Load Dispatch Centers (LDCs). Constructing and maintaining the power system network model that is used by the network applications is important for ensuring reliable results.

POSOCO has been interacting with experts both in India and abroad for improving Visualization and Situational Awareness at NLDC/RLDCs/SLDCs. Dr. NDR Sarma, Principal Engineer at Electric Reliability Council of Texas, USA visited all the Regional Load Dispatch Centers (RLDCs) and National Load Dispatch Center (NLDC) for suggesting improvements in the usage of State Estimation and other tools that are available at these LDCs and at other State Load Dispatch Centers. This report summarizes the outcome of these visits and suggests some recommendations to improve the usage of State Estimation in load dispatch centers in India.

Indian power system is monitored by an integrated SCADA/EMS installed at several control centers dispersed all over the geographical territory of the country. SCADA/EMS of National control center is integrated with SCADA/EMS systems of five regional control centers which are further integrated with SCADA/EMS systems of 32 state control centers in lower hierarchy.

RTU/SAS of the stations belonging to State utilities report to the Sub LDC or directly to its State Load Despatch Center. The RTU/SAS installed at the stations of Central Sector and entities directly under jurisdiction of RLDCs report directly to the Regional Load Despatch Center (or the respective CPCC). No RTU/SAS directly reports to National Load Despatch Centre.

Reporting of RTUs (or SAS)					
RTU/SAS Status	Data Ownership	Hierarchical forward flow of data			
Reporting directly to Sub LDC	Sub LDC	Sub LDC →SLDC→RLDC→NLDC			
Reporting directly to SLDC	SLDC	SLDC→RLDC→NLDC			
Reporting directly to RLDC (or CPCC)	RLDC (or CPCC)	RLDC \rightarrow NLDC			

Table 1: Reporting of RTUs (or SAS) in LDCs

SCADA/EMS systems of regional control centers were implemented one by one between year 2002 to 2006 under the Unified Load Dispatch and Communication (ULDC) scheme executed by POWERGRID. National Load Despatch Center (NLDC) was established in 2009. Purpose of national control center is mainly to monitor inter-regional and international transfer of power for best utilizing the generating resources by balancing deficit/surplus, diversity in peaking times and seasonal variations in demand of different regions. With effect from 1st October 2010, Government of India has assigned the responsibility of operating the five (5) RLDCs and NLDC to Power System Operation Corporation Limited (POSOCO), a wholly owned subsidiary of Power Grid Corporation of India Limited (POWERGRID).

Figure 1: Locations of Load Despatch Centers in India

2. NEED FOR STATE ESTIMATION

State Estimation was introduced by Gauss and Legendre (around 1800)^[1]. The basic idea was to "fine tune" State Variables (Voltage and Angle at each bus) by minimizing the sum of the residual squares. This is the well-known Least Squares (LS) method. The reason for its popularity is easy to understand: At the time of its invention there were no computers, and the fact that the Least Squares estimator could be computed explicitly from the data made it the only feasible approach.

State Estimation was applied to Power Systems by Schweppe and Wildes in the late 1960s in a real-time environment. But the State Estimation Weighted Least Square Algorithm directly applied to Power system may not work as per the expectations. It needs to be customized by SCADA and supported by certain assumptions.

2.1 Complex power system

Figure 2: Expansion of Indian Power system

¹ A. P. Sakis Meliopoulos, Bruce Fardanesh, Shalom Zelingher "Power System State Estimation: Modeling Error Effects and Impact on System Operation". *Proceedings of the Hawaii International Conference On System Sciences, January 3-6, 2001, Maui, Hawaii*

Earlier - Simpler Networks

Figure 3: Increasing complexity in Load Despatch

The huge volume of data is acquired at the Load Despatch Centers and it is not possible for the operator to analyze each and every analog and digital point to detect the problem and take decision accordingly.

2.2 Security and reliability of Grid

While operating the grid, the operator needs to know the status of the grid and make sure of its secure operation. Operator has to ensure that it is secure not only in the base case but also for any contingencies in the system. If any contingency causes any operating limit violations, operator needs to take actions to take care of the violations. Operator may modify the precontingency state to eliminate the potential emergency in case contingency really occurs. There could be some Special Protection Schemes (SPS) or Remedial Action Schemes (RAS) which are programmed in the system so that when any operation limits are violated, it may trigger the control action as per SPS/RAS. Remedial Action Plans (RAPs) could also be there which are defined to be implemented manually to take care of some violations. Contingency Analysis would have to consider these SPS/RAS and RAPs. The concept of security is associated with the probability of maintenance of adequate supply. Higher the security level, lower is the probability of loss of supply. Security oriented control actions are aimed at avoiding blackout and equipment damage.

Fig.4 shows one way of looking at different security levels in which the system can be operated as defined by Tomas Dy-Liacco who is referred to as the father of modern energy control centers^{2a, 2b}.

Figure 4: Security Levels of grid operation

Level 1 – Secure: When the system is operating at this level the following conditions apply:

- All Loads supplied without operation limit violations
- In the case of contingency, no violations will occur
- In this level, the network survives any of the contingencies postulated without the need to reply on any post-contingency action

Level 2 – Correctively Secure: When the system is operating at this level the following conditions apply:

- All Loads supplied without operation limit violations (same as level 1)
- Contingencies cause no loss of load as long as appropriate control action is taken to correct them
- This level is more economical than level 1, but relies on post-control actions being performed by the operator.

^{2a}Dy-Liacco, Tomas, "Control centers are here to stay". *Computer Applications in Power* (Institute of Electrical and Electronics Engineers) Vol **15**, No. 4, pp 18–23, Oct 2002.

^{2b}Felix F. Wu, Khosrow Moslehi and Anjan Bose, "Power System Control Centers: Past, Present, and Future", Proceedings of IEEE, Vol. 93, No. 11, pp 1890-1908, November, 2005.

Level 3 – Alert: When the system is operating at this level the following conditions apply:

- All Loads supplied without operation limit violations (same as level 1 and Level 2)
- Contingencies cannot be corrected without loss of load
- The system can be brought back to Level 1 or 2 by preventive rescheduling using an optimal power flow with contingency constraints

Level 4 – Correctable Emergency: When the system is operating at this level the following conditions apply:

- All Loads supplied but operation limits are violated
- These can be corrected without loss of load
- The system can be brought back to Level 3 by corrective actions

Level 5 – Non-Correctable Emergency: When the system is operating at this level the following conditions apply:

- All Loads supplied but operation limits are violated
- These cannot be corrected without loss of load

Level 6 – Restorative: When the system is operating at this level the following conditions apply:

- No operation limits are violated, but loss of load has occurred
- Restorative control aims to return the system to Levels 1 or 2

It is important for the operator to operate the system in a secure state or correctively secure state. If the system is in some other state it is important to bring it back to the secure or correctively secure state as quickly as possible. Since power systems have become very complex operator needs support tools to help in taking proper decisions to operate the system in desired secure state. Supervisory Control and Data Acquisition (SCADA) systems are installed in the system to facilitate data acquisition and control of devices. Remote Terminal Units (RTUs) or SAS are installed at substations to acquire various parameters such as bus voltages, line power flows, generation MW and MVAR values, status of circuit breakers and isolators, etc. RTU/SAS also provide interface to control circuit breakers and other devices at substations.

Traditionally SCADA has been used to know the status of the system. But SCADA has the following issues:

- Data received from the network is not always complete, due to telemetry or transducer failures.
- Even if complete data is received, sometimes it could include erroneous data due to faulty metering, communication noise, etc.
- Though all possible measurements are available, it may not be economically feasible to bring all the data to the control center.

However, all the application functions (part of power system security analysis function), require reliable real-time data. Fred Schweppe^{3,4,5,6} initially proposed State Estimation methodology which enables to estimate bus voltage magnitudes and angles at all buses in the system with set

³ Fred C. Schweppe and J. Wildes, "Power System Static-State Estimation Part I: Exact Model", IEEE Trans on Power Apparatus and Systems, vol. PAS-89, no. 1, January 1970.

⁴Fred C. Schweppe and J. Wildes, "Power System Static-State Estimation Part II: Approximate Model", IEEE Trans on Power

Apparatus and Systems, vol. PAS-89, no. 1, January 1970.

⁵Fred C. Schweppe and J. Wildes, "Power System Static-State Estimation Part I: Implementation", IEEE Trans on Power

Apparatus and Systems, vol. PAS-89, no.1, January 1970.

⁶Chapter 15, State Estimation of Power Systems, "Power System Analysis" by John J. Grainger and William D. Stevenson, Jr..

of measurements as input. Based on the estimated bus voltages one can easily estimate the flows on the lines and subsequently able to determine if there are any operational limit violations. It is also possible to detect any bad data in the measurements set and helps to provide good and reliable real-time data set. Based on this reliable data, security assessment functions can be reliably deployed in order to analyze contingencies, as well as corrective actions. With the availability of State Estimation, old SCADA systems were replaced by new generation Energy Management Systems (EMS) equipped with on-line state estimator.

It is the responsibility of any Load Despatcher to drive the power system in a stable, reliable, secure and optimal manner. In order to achieve this operator should have complete knowledge about the system (Parameters and models of the system components) and knowledge of the situation (by comprehending the real time data). Energy Management System (EMS) is the mechanism to capture "system knowledge" and "situational awareness" and provide some key indicators to help the Load Despatcher in real-time decision making. Running State Estimation and other EMS tools is essential for reliable and secure operation of the grid. 'Not using State Estimation' can lead to 'poor visualization and Situational Awareness which can be catastrophic under alert/emergency conditions in the grid.

EMS applications can be divided into two parts –

- a) **Generation Applications** which includes Unit commitment/scheduling, Reserve/Cost monitoring, Economic Despatch, etc.
- b) **Network Applications** which includes fault analysis, contingency analysis, Powerflow, optimal powerflow, Data Validation (by State Estimation), etc.

Energy Management System (EMS) has a system of computer-aided tools used by operators of electric utility grids to monitor, control and optimize the performance of the generation and/or transmission system. The monitor and control functions are known as SCADA. This computer technology is also referred to as SCADA/EMS or EMS/SCADA. In these respects, the terminology EMS then excludes the monitoring and control functions, but more specifically refers to the collective suite of Power Network Applications (PNA) and to the generation control and scheduling applications.

State Estimator provides a base-case for all the Network Applications and some of the generation applications.

Figure 5: Base-case generation from State Estimation process

The output of the state estimator application acts as a base-case for the other applications to carry out various studies in order to help grid operator in real-time operation.

2.3 Contingency analysis for (n-1) secure operation

It is a mandate for grid operators that at any point of time the system should be (n-1) secure i.e. the power system should be operated in such a manner that outage of any element should not lead to violation of any other parameter in grid.

In Contingency Analysis application, the base-case taken from the state estimator/powerflow application is solved for various contingencies defined in the Contingency database using Newton Raphson/Decoupled powerflow. Its objective is to evaluate the system performance under outages.

Its inputs are -

- System information (Parameters and connectivity info)
- Load and generation profile
- Voltage set-points
- Component modeling
- Rating of the equipment

Its output is –

• List of critical contingencies leading to violations.

Figure 6: Contingency Analysis – Flow Chart

In order to use this application in a useful manner we need to follow a proper processing approach to see which contingencies are credible (most likely to happen) and follow some criteria to rank them in order of their severity.

We can filter the contingencies based on the following criteria -

- a) Probability of occurrence
- b) Use of approximate analysis (like powerflow with less tolerance, network equivalents, etc.)

One of the most commonly used ways is to rank the contingencies as per their severity based on the performance indices of –

• Overload index

$$P_{i_overload} = \sum_{j=1}^{nline} \left(\frac{f_{lj}}{f_{lj_max}} \right)^2$$

• Voltage index

$$P_{i_voltage} = \sum_{j=1}^{nbus} \left(\frac{\Delta V_j}{\Delta V_{j_max}} \right)^2$$

Based on type of limit violated and %violations,

Index = 1000*Type of limit violated + (100 + %violation)

The constants "1000" and "100" can be changed to any other value as per the user requirement.

Limits type are generally taken as "1" for Normal "2" for Emergency "3" for Loadshed

For eg. – Emergency limit violated by 12% has an Index = 1000*2 + (100 + 12) = 2112

2.4 Multi-vendor system in India

SCADA/EMS systems are under the process of up-gradation in all the five regions. Different vendors are executing the up-gradation projects; three regions are being executed by one vendor while other two regions by other two different vendors.

S No	No. RLDC/SLDC	Present Location		After Up-gradation Location	
5. NO.		Main	Back-up	Main	Backup
1	NRLDC	New Delhi		New Delhi	ERLDC, Kolkata
2	ввмв	Chandigarh		Chandigarh	Patiala
3	Delhi	New Delhi		New Delhi	Heerapura
4	Haryana	Panipat		Panipat	Shimla
5	Himachal Pradesh	Shimla		Shimla	Panipat
6	J&K	Jammu		Jammu	Srinagar
7	Punjab	Patiala		Patiala	Chandigarh
8	Rajasthan	Jaipur		Jaipur	Delhi
9	Uttar Pradesh	Lucknow		Lucknow	Modipuram
10	Uttarakhand	Rishikesh		Dehradun	
11	ERLDC	Kolkata		Kolkata	New Delhi
12	Bihar	Patna		Patna	
13	DVC	Maithon		Maithon	Kolkata
14	Jharkhand	Ranchi		Ranchi	
15	Odisha	Bhubaneshwar		Bhubaneshwar	Meramundali
16	Sikkim	Gangtok		Gangtok	

S. No.	RLDC/SLDC	Present Location		After Up-gradation Location	
5. NO.		Main	Back-up	Main	Backup
17	West Bengal	Howrah		Howrah	Kolkata
18	WRLDC	Mumbai		Mumbai	NRLDC, New Delhi
19	Chhattisgarh	Raipur		Raipur	Bhilai
20	Dadar & Nagar Haveli			Magarwada	
21	Daman & Diu			Silvassa	
22	Goa	Panjim		Madgaon	Cuncolim
23	Gujarat	Vadodara		Vadodara	Gandhinagar
24	Madhya Pradesh	Jabalpur		Jabalpur	Bhopal
25	Maharashtra	Kalwa		Kalwa	Ambajhari (near Nagpur)
26	SRLDC	Bengaluru		Bengaluru	NRLDC, New Delhi
27	Andhra Pradesh	Hyderabad		Hyderabad	Tirupati
28	Karnataka	Bengaluru		Bengaluru	Neelamangala
29	Kerala	Kalamassari		Kalamassari	Trivendrum
30	Puducherry	Puducherry		Puducherry	
31	Tamil Nadu	Chennai		Chennai	Madurai
32	Telangana	Hyderabad		Hyderabad	Tirupati
33	NERLDC	Shillong		Shillong	Guwahati
34	Assam	Kahelipara		Kahelipara	
35	Arunachal Pradesh			Itanagar	

S. No.	RLDC/SLDC	Present Location		After Up-gradation Location	
		Main	Back-up	Main	Backup
36	Manipur			Imphal	
37	Meghalaya	Nehu		Nehu	
38	Mizoram			Aizawl	
39	Nagaland			Kohima	
40	Tripura	Agartala		Agartala	

Table 2: Location of Main and Back-up Control Centers in India

Fig.8 shows the vendors and the regions in which they are executing the up-gradation projects.

Figure 8: Vendor distribution of SCADA systems after up-gradation project.

2.5 SCADA Vs State Estimator

State Estimation has become a very important tool for the operators in control centers across the world. Operator can no longer just depend on SCADA data for operating the grid due to the issues discussed earlier. If operator depends just on SCADA, it is not possible for the operator to know what is happening in the system when SCADA data is not available. Further, if SCADA data is not correct, operator cannot know the actual state of the system. It is possible that operator may not be able to notice a potential overload in the system. This may lead to cascade outages and a potential blackout of the system. On the other hand, with the help of state estimation, one can isolate bad data and also be able to estimate the state even if there is no SCADA data at a given station (provided there is sufficient redundancy and spread of measurements in the system). Running State Estimation and other EMS tools is essential for reliable and secure operation of the grid. 'Not using State Estimation' can lead to 'poor visualization and Situational Awareness which can be catastrophic under alert/emergency conditions in the grid.

State Estimator application uses SCADA analog measurements such as Active Power (MW), Reactive Power (MVAr) and Voltage (kV) available on all the Power system equipments (such as lines, transformers, generators, etc.) and SCADA digital measurements such as Circuit Breaker & Isolator status (either open or closed), tap position of transformers, etc. as an input. It forms that part of the SCADA database which State Estimator application uses in its algorithm.

Figure 9: Inputs to State Estimation process

It is the error in SCADA and Network database only which leads to an *Erroneous* or *Invalid Solution* in State Estimator application.

In the real-time display the state estimator result can be displayed along with the SCADA data as shown below in *fig.10*.

3. STEPS INVOLVED IN STATE ESTIMATION

State Estimation is the process of assigning a value to an unknown system state variable based on measurements from that system according to some criteria^[7]. State Estimation is based upon Weighted Least Square Algorithm.

The basic equations involved are -

where,

z is the vector of measured state variables H is measurement function coefficient matrix x is the vector of estimated state variables e is the error W_j is the weight assigned to error e_j n is the number of measurements

It is the function 'f' which is minimized using Weighted Least Square algorithm.

Over the past 25 years, the basic structure of power system state estimation has remained practically the same:

- Single phase model
- P,Q,V measurement set

⁷ Chapter 12, Introduction to State Estimation in Power Systems, "Power Generation, Operation, and Control" 2nd edition by Allen J. Wood and Bruce F. Woollenberg, John Wiley & Sons, Publishers, 2012.

- Non-simultaneousness of measurements
- Single frequency model

The assumptions made in the real-time Power system application of State Estimation are -

- a) Voltage and Current waveforms are purely sinusoidal
- b) Balanced 3-Ø system
- c) Power system is a symmetric 3-Ø system which is fully described by its positive sequence network

These assumptions lead to a result which slightly differs from the actual scenario. We can say that the Estimator results are slightly biased due to these assumptions.

State Variables: Voltage and Angle at each node are the state variables. By estimating these two parameters we can calculate line flows, injection, drawls, etc.

3.1 System Modeling

The operation team at control centers is more concerned with real time and near term studies of the power system. The device oriented model contains adequate information to provide the system operator with details for that portion of the network over which he has responsibility. This is achieved by exclusive representations of all electrical devices and establishing the interconnectivity depicting the true system at the filed for sub-station, generating station and network boundary conditions.

The state estimator output primarily depends upon the real-time data availability and hence it is important to depict observable portion of network for obtaining a solution. The non-telemetered part of network needs to be represented as external area in order to achieve observability of the complete model with acceptable matching boundary flow. It can be done through Network Equivalencing and Network Truncation.

While carrying out network equivalencing; the external model has to be represented with sufficient details so that the accuracy of the internal model is consistent when topological changes occur. In the proposed case, the external model representations may be achieved through fixed MW / MVAR fictitious generator/load with +/- generator/load capacity.

While carrying out network truncation; the external model is ignored and a Load/Injection is modeled at the point of truncation with the real-time MW and MVAR data of the mapped to it.

Figure 14: Mapping of real-time ICT data at truncated loads at NLDC

3.2 Topology processing

In **Topology Processing**, based on the Circuit Breaker and Isolator status, dead components are filtered out and connectivity is established to form the live energized network on which state estimator algorithm will run. Topology processor determines connectivity of the network to be used in SE process.

TOPOLOGY PROCESSING					
Objective	Filter Live system components and Define the LIVE (Energized) network				
Inputs	System component details, Switch statuses				
Output	Live (energized) network details				

Table 3: Objective, Input and Output of Topology Processing

Figure 16: Output of Topology Processor after filtering dead components

State Estimator application runs on the energized network provided by the Topology Processor.

3.3 Observability analysis

In **Observability Analysis**, it is determined whether the currently available set of measurements provides sufficient information to allow computation of state variables. Since the availability of real time measurements can change because of failures in the telemetry equipments, an observability check is made before the state estimator solution is executed. When sufficient measurements are available so that the entire state vector of bus voltage magnitudes and angles throughout the network can be estimated, the network is said to be observable. If the network is observable, state estimation may proceed; otherwise, pseudo-measurements must be added to the measurement set to allow an estimate of the state vector.

OBSERVABILITY

Insufficient Measurements @ BUS10 and BUS11

Figure 17: Network with some unobservable part

To make the observability analysis more clear let us consider the following flow chart -

Figure 18: Observability flow chart of a Network

Difference between terms "Observable" and "Solvable" – Portions of the network where State Estimator can estimate the state using only actual measurements is observable. Whereas portions of the network where State Estimator can calculate the state using available measurements complemented by PSEUDO measurements is solvable.

3.4 Use of Pseudo measurements to attain observability

Pseudo-measurements are used to complement actual measurements in order to allow full network solution by making it Observable (or strictly speaking "solvable").

Pseudo-measurements are generated from:

- generation and load models and schedules
- voltage regulation schedules
- past records
- non real-time information exchanged with neighboring utilities

Above information translates into a single type of pseudo-measurement i.e. unit and load injections. Measurement vector Y is extended to include minimal number of pseudo-measurements and Pseudo-measurements are given greater uncertainty than actual measurements.

3.5 Weighted Least Square Algorithm

Weighted Least Square Algorithm is the most widely used algorithm for State Estimation in Power systems. The measurement equations are:

Y = h(X) + V

where,

X = column-vector of state variables

- Y = column-vector of measurements
- V = column-vector of measurement errors

(*Note*: The equation mentioned above is same as the equation in *Section 4* with different notation of variables.)

This is an over-determined powerflow problem:

- using the information from *M* independent measurements, $Y = \{y_j\}$
- to solve for *N* unknowns (state X or solution variables),
- where *M* is greater than *N* (*M*-*N* = degree of freedom)

The best estimate of the state X is the solution of a least squares problem:

Min J(X,Y) = Sum { $[y_i - h_i(X)] / sigma_i$ }²

The value of J is sometimes called the "cost" of the solution.

This estimate of X is obtained by the well known Generalized Least Squares (GLS) method: $X = [H^T W^{-1} H]^{-1} H^T W^{-1} Y$ suitably adapted to deal iteratively with non-linear equations:

$$X_{k+1} - X_k = [H^T W^{-1} H]^{-1} H^T W^{-1}[Y-h(X_k)]$$

In the case of independent measurement errors, this reduces to the Weighted Least Squares WLS, in which W⁻¹ is diagonal with:

 $W_{ii} = 1/sigma_i^2$

"sigma" reflects the measurement uncertainty.

"W" reflects the measurement confidence.

3.6 Parameters for State Estimation

Various parameters are generally defined for State Estimation in order to provide flexibility or tighten the limit in order to get better SE output. Each EMS vendor may have their own way of solving state estimation problem. Some of the parameters in Alstom's SE application (known as RTNET) are given below –

- Voltage Convergence threshold
- Angle Convergence threshold
- Real Power Mismatch Tolerance
- Reactive Power Mismatch Tolerance
- Maximum iterations for Convergence
- Maximum Cost Residual for convergence
- various other parameters

Convergence Maximum Iterations Voltage Convergence:	70			
Max. Iterations allowed	Angle Convergence: Magnitude Convergence:	0.0050		
Threshold Difference limit in estimated data between successive iterations for		Valid Power Mismatch Tolerance Valid Real Power Mismatch Tolerance: 500.0		
Conve	- Serve	Valid Re	eactive Power Mismatch Tolerance:	500.0
		MW & M for accep basecase	IVAR mismatch Tolerance at any bus btability of solution and passing the to other EMS applications.	

Figure 19: Parameters for State Estimation

3.7 Voltage and Angle Convergence

The state variables which are estimated by the State Estimator application are "Voltage" and "Angle" at each bus. State Estimator solves the equations of Weighted Least Square Algorithm in an iterative manner and Voltage & Angle after each iteration is compared with that of the previous iteration.

If {Voltage ('k+1' iteration) – Voltage ('k' iteration) < Voltage Magnitude Convergence Threshold}, then Voltage Convergence is achieved.

If **{Angle ('k+1' iteration) – Angle ('k' iteration) < Angle Convergence Threshold}**, then Angle Convergence is achieved.

3.8 Bad data processing

Different vendors have different methodology to detect and handle bad-data. Bad-data detection in most of the vendor's products is based on the equation residuals evaluated at the calculated network state.

Residual = Estimated value - Measured value Sum of all Residuals = Cost of the solution

Large residuals generally indicate that the associated measurement (or bus equation) is grossly in error or anomalous. Also, the total cost "J" of the solution will be too high in the presence of errors and solution may be invalid if it exceeds the tolerance defined for Cost of Solution.

Individual equation residual is analyzed whose value is larger than expected and propose weight adjustment is done to reduce the influence of those measurements upon the solution. Sensitivity analysis of equation residuals to the proposed weight adjustments is done and weight changes are implemented. Weighted Least Square algorithm is re-solved to obtain new state solution. The total cost of solution and equation residuals are checked again and if acceptable then the solution is said to be valid and if not, the error processing is repeated with subsequent weight changes.

The bad-data is identified by statistical analysis using Chi-square test which indicates if any baddata is present in the measurement set or not. If it indicates the presence of bad-data then the measurement with highest residual is considered as the bad-data.

Bad data identification identifies the bad data and marks it as anomalous. It is indicated in a real time display as shown in the diagram (corresponding to Alstom system in NLDC) below –

Figure 20: Bad data detection indication in SCADA display

IJ	DEI	VTIFY	BAD	DATA	
Vo	011	cages			
	Me	easu	Estimat		
1	1	.060	1.060		
2	1	.045	1.044		
3	1	.010	1.0	12	
4	1	.020	1.02	204	
Po	DWE	er Flo	ວໜຮ		
		Meas	Est	cimat	
1	2	1.57	1.5	5	
1	5	0.75	0.6	5	
2	1	-1.53	3 -1	. 52	
2	4	0.56	0.5	5	
2	5	0.42	0.4	1	

Figure 21: Network with Bad data

OMIT BAD MEAS

Power Flows Meas Estimat 1 5 0.75 0.65 5 1 -0.43 -0.63

Figure 22: Bad data identification and Bad data suppression List of bad data in State Estimator display (corresponding to Alstom system) is shown below –
Teleme	tered N	etwork Data	By Station	Sorter	d/Filtered Anomalou	us Special	Status		
Time: 25	Jul-2011 14	1:52:22			RT	NET	REALTIME S	SOLVD W. MIS	мтсн
INCLUDE - Anomalous: 🗹 Suspect: 🗌 Abnormal: 🗌 Man Disabled: 🗌 Auto Disabled: 🗌 Available: 🗌									
ORDER BY - Station: 🗹 Standard Deviation: 🗌 Bias: 🗌 Weighted Residual: 🗌									
Station	Device Type	Device	Analog	SCAD	Quality A / Estimated	Va SCADA	lue / Estimated	Weighted Residual	Standard Deviation
AMRIT_PG	XFMR_S	FE_T2	MW	Good	/ Anomaly	135.87	7 / -132.86	35.990	
BHIWA_PG	LINE	F_BHIWA_GURGN	MW	Good	/ Anomaly	317.61	/ -33.41	20.096	
BRELY_PG	ZBR	F_BRELY_MANDU1	MW	Good	/ Anomaly	338.00) /-377.66	29.524	
BRELY_PG	ZBR	F_BRELY_MANDU2	MW	Good	/ Anomaly	341.00) / -379.12	29.708	
CHINT_UP	LINE	E_CHINT_HRDOI	MW	Good	/ Anomaly	0.00) / 167.81	-29.545	
CHINT_UP		E_CHINT_HRDOI	MVAR	Good	/ Anomaly	0.00	J / 113.65	-20.009	
D_IHM_NI	XFMR_S	FE_14	MVV	Good	/ Anomaly	-0.00	J / 263.85	-18.846	
D_THM_NT	XFMR_S	FE_13	MVV	Good	/ Anomaly	-0.00	J / 262.28	-18.734	
GRAPR_PG		F_GRK_1_GRKPR2	MVAR	Good	/ Anomaly	-739.00	J / 26.21	-56.376	
GRAPR_PG		F_GRAPR_LANUW3	MVAR	Good	/ Anomaly	-537.40	J / -96.04	-18.959	
HRDOI_UP		E_CHINT_HRDOI	MVV	Good	/ Anomaly	-40.00	5 / -166.42	22.247	
LKNOW_PG	ZBR	F_GRAPR_LANOW4	MVV	Good	/ Anomaly	-242.40	J / 124.34	-27.020	
LINNUW_PG		F_GRAPK_LANUW3	MOV	Good	/ Anomaly	-205.00	J / 124.33	-24.203	
		RN_22U_UNNAU1	MVV	Good	/ Anomaly	-20.00) / -214.24	49.739	
		RN_22U_UNNAU1	MVAR	Cood	/ Anomaly	0.00	J / -184.80	49.004	
		RN_22U_UNNAU2	MOV	Cood	/ Anomaly	-23.47	/ / 213.04	49.739	
MAIND DG		E ALDAD MAINDA	MOAR	Good	/ Anomaly	264.30) / 265.05	49.004	
MAINP_PO	20N 700		5000	Good	/ Anomaly	-204.J) / 255.05	-30.320	
MPACH DC		F_ALDAD_MAINP2	5000	Good	/ Anomaly	-272.35) / 205.00	-30.933	
MBAGH PG	XEMR S	FE T2	MOA	Good	(Anomaly	82.60	1 (.205.09	32.523	
MIERK DG	LINE	E MIERK DATIA	MQ/AR	Good	(Anomaly	139.24	5 / 123.00	10 314	
	LINIT	F 100	MOOL	Good	(Anomaly	130.23	1 (140 43	23.815	
OBRAB UP	LINIT	F 1113	MAA	Good	(Anomaly	0.00	1 (123 11	-19 621	
	0.01	1_010	1414.4	0000	Anomaly	0.00	123.11	- 13.02 1	

Figure 23: List of Anomalous data

These measurements are omitted from the State Estimator process and are not used again in its algorithmic equations until we re-initialize certain parameters of State Estimation process.

3.9 Chi-square Test

One of the methods used for detecting bad data is the Chi-squares test. Once bad data is detected, it needs to be identified and eliminated or corrected, in order to obtain an unbiased state estimate.

Chi-squares χ^2 Distribution:

Consider a set of N independent random variables X_1 , $X_{2, \dots, N}$; where each X_i is distributed according to the Standard Normal distribution:

Then, a new random variable Y defined by:

$$Y = \sum_{i=1}^{N} X_i^2$$

will have a χ^2 distribution with N degrees of freedom, i.e.

$$Y \sim \chi_N^2$$

The degrees of freedom N, represents the number of independent variables in the sum of squares. This value will decrease if any of the X_i variables form a linearly dependent subset.

Now, let us consider the function f(x), written in terms of the measurement errors:

$$f(x) = \sum_{i=1}^{m} R_{ii}^{-1} e_i^2 = \sum_{i=1}^{m} (\frac{e_i}{\sqrt{R_{ii}}})^2 = \sum_{i=1}^{m} (e_i^N)^2$$

where e_i is the ith measurement error, R_{ii} is the diagonal entry of the measurement error covariance matrix and m is the total number of measurements. Assuming that e_i 's are all Normally distributed random variables with zero mean and distribution, i.e. variance, e_i^{N} 's will have a Standard Normal Distribution, i.e.,

e_i^N ~ N(0, 1)

Then, f(x) will have a χ^2 distribution with at most (m - n) degrees of freedom. In a power system, since at least n measurements will have to satisfy the power balance equations, at most (m - n) of the measurement errors will be linearly independent. Thus, the largest degree of freedom can be (m - n), i.e. the difference between the total number of measurements and the system states.

Figure 25: χ² Probability Density Function

A plot of the χ^2 probability density function (p.d.f) is shown in *fig.25* above. The area under the p.d.f. represents the probability of finding X in the corresponding region, for example:

$$Pr\{X \ge x_t\} = \int_{x_t}^{\infty} \chi^2(u) \cdot du$$

represents the probability of X being larger than a certain threshold x_t . This probability decreases with increasing values of x_t , due to the decaying tail of the distribution. Choosing a probability of error, such as 0.05, the threshold x_t can be set such that:

$$Pr\{X \ge x_t\} = 0.05$$

In *fig.25*, this threshold corresponds to $x_t = 25$ indicated by the vertical dotted line. The threshold represents the largest acceptable value for X that will not imply any bad data. If the measured value of X exceeds this threshold, then with 0.95 probability, the measured X will not have a χ^2 distribution, i.e. presence of bad data will be suspected.

Tables containing Chi squares cumulative distribution function values for different degrees of freedom can be found in various statistical publications.

χ^2 Test for Detecting Bad Data in WLS State Estimation:

The WLS state estimation objective function J(x) can be used to approximate the above function f(x) and a bad data detection test, referred to as the Chi-squares test for bad data, can be devised based on the properties of the χ^2 distribution.

The steps of the Chi-squares χ^2 test are given as follows:

Step 1: Solve the WLS estimation problem and compute the objective function as given below –

$$J(\hat{x}) = \sum_{i=1}^{m} \frac{(z_i - h_i(\hat{x}))^2}{\sigma_i^2}$$

where,

x[^] estimated state vector of dimension n.

 $h_i(x^{\hat{}})$: estimated measurement i.

z_i : measured value of the measurement i.

 $\sigma_i^2 = R_{ii}$ variance of the error in measurement i.

m : number of measurements.

Step 2: Look up the value from the Chi-squares distribution table corresponding to a detection confidence with probability p (e.g. 95%) and (m — n) degrees of freedom. Let this value be χ^2 (m-n), p.

Here
$$p = \Pr(J(\hat{\mathbf{x}}) \le \chi^2_{(m-n),p})$$
.

Step 3: Test if $J(x^{n}) \ge \chi^{2}(m-n)$, p. If yes, then bad data will be suspected. Else, the measurements will be assumed to be free of bad data.

Example 1: Consider 5 independent measurements of a quantity, given as follows:

Measured variable	X ₁	X ₂	X ₃	X ₄	X ₅
Measured value	0.5	-1.2	0.80	0.20	-3.1

Assume that the measurements are taken from a sample which is known to have a Standard Normal distribution, i.e.

$$X_i \sim N(0, 1)$$
 for all i

Use χ^2 distribution to check for bad data with 99% confidence.

Solution:

Let us form the sum of squares of the measured variables:

$$y = \sum_{i=1}^{5} x_i^2 = 11.98$$

The probability of obtaining this value (11.98) when Y indeed has a χ_4^2 distribution can be found by using the following –

Matlab Software Statistical Toolbox function CHI2CDF(Y, DF).

where,

DF is the degrees of freedom (which is **4** for this example)

This probability, denoted by P will be obtained as:

Since 0.9825 < 0.99, bad data will not be suspected with 99% confidence. Alternatively, the test threshold at the 99% confidence level can be obtained by using another one of the Matlab functions called CHI2INV (P, DF) where P is the confidence probability level, which is 0.99 for this example. Execution of this function yields the corresponding threshold y_t, which represents the largest acceptable value for y, without suspecting any bad data with 99% confidence:

$$y_t = \text{CHI2INV}(0.99, 4) = 13.28$$

Again, since $y_t = 13.28 > y = 11.98$, bad data will not be suspected for this example.

Example 2: Consider the 3-bus system and its measurement configuration shown in the figure.

The corresponding network data are given below:

Lin	e	Resistance	Reactance	Total
From Bus	To Bus	R (pu)	X (pu)	Susceptance
				2b _s (pu)
1	2	0.01	0.03	0.0
1	3	0.02	0.05	0.0
2	3	0.03	0.08	0.0

Check the bad-data as per the Chi-square test.

Solution:

The number of state variables, n for this system is 5, made up of three bus voltage magnitudes and two bus voltage phase angles, slack bus phase angle being excluded from the state list. There are altogether m = 10 measurements, i.e. 2 voltage magnitude measurements, 2 pairs of real/reactive flows and 2 pairs of real/reactive injections. Therefore, the degrees of freedom for the approximate χ^2 distribution of the objective function J(x^) will be:

m –n = 10 – 5 = 5

Measurements are generated by solving the base case power how and then adding Gaussian distributed errors. One of the measurements P_2 , is then changed intentionally, to simulate bad data. The state estimation solution and the objective function values that are obtained for both cases, are shown in the tables below:

	To Bus						
From Bus	No b	ad data	One bad data				
	V	θ°	V	θ°			
1	1.0000	0	1.0000	0.00			
2	0.9886	-0.84	0.9886	-0.67			
3	0.9834	-1.19	0.9834	-1.20			

Measurement	Measurement Type	Me	easured Value
No.		No bad data	One bad data
1	V_1	1.0065	1.0065
2	V ₃	0.9769	0.9769
3	P ₂	-0.4007	-0.3507
4	P ₃	-0.4857	-0.4857
5	Q ₂	-0.3052	-0.3052
6	Q ₃	-0.3850	-0.3850
7	P ₁₂	0.4856	0.4856
8	P ₁₃	0.4054	0.4054
9	Q ₁₂	0.3821	0.3821
10	Q ₁₃	0.3367	0.3367
	J(x^)	6.1	22.8

Using MATLAB software, the test threshold at 95% confidence level is obtained by Matlab function CHI2INV as:

Y_t = CHI2INV (0.95, 5) = 11.1

In the first case, since $J(x^{\Lambda}) = 6.1 < 11.1$, bad data will not be suspected. However, the test will detect bad data for the second case, since the corresponding value of $J(x^{\Lambda}) = 22.8$ exceeds the χ^2 -test threshold of 11.1.

3.10 Output of State Estimator

The Output of State Estimator contains Estimated Complex Voltages, Estimated Real Power "P" and Reactive Power "Q" injections and flows, Error Analysis and list of Bad Bata.

It can be diagrammatically represented as shown in *fig.26* below.

Figure 26: Output of state Estimation process

The Output of the state estimator application acts as a Base-case for other applications.

3.11 Quality of State Estimator solution

The quality of the state estimator solution can be analyzed by the total system cost of the solution. It is generally calculated by the following methodology:

Residual = Estimated value - Measured value Sum of all Residuals = Cost of the solution

If the cost of the solution is high then we can say that the solution quality is poor. Hence, lower is the cost of the solution; better is the state estimator output.

4. FACTORS AFFECTING STATE ESTIMATOR OUTPUT IN INDIA

The various factors affecting the output of State Estimator are discussed in the sections below.

4.1 **Topology Errors**

Topological errors usually cause the state estimate to be significantly biased. Topology of the system is determined based on the status position of circuit breakers and isolators acquired by the SCADA system. It is understood that main reason for such errors are poor potential free contacts for isolators at substation especially for feeders below 400 kV.

Potential free contacts are used to transfer switch position to control centre. Rusting or maloperation of these contacts is main cause of incorrect status acquisition and thus determining incorrect power system topology.

Figure 27: Digital data acquisition

Many times it is also found that whenever potential free contacts are not available Contact multiplying relays (CMR) is used and for a circuit breaker status indication two numbers of CMRs are required. Due to shortage of CMRs only closed position of CB status is wired and open status is left unwired. This results into suspect open condition of CB causing incorrect topology. In case of suspect switch position, depending upon the vendor, state estimator may assume closed position or assume the last good value as the current position. *Table 4* gives some of the impacts of incorrect status indication on State Estimation.

Incorrect status of switching device connecting to	Impact on State Estimation
Line	Change in MW and MVAR flows on neighboring lines, or cause of new Island
Generator	Change in flows in the lines connecting to the plant, and increased or decreased generation of nearby generating units/stations.
Load	Change in flows in the lines connecting to the station, and if the load is removed cause of less total system generation.
Reactor	Change in MVAR flow in the lines of the station, and improper voltages
TCSC/FSC bypass switching device	Change in MW flow through the line containing the TCSC or FSC.

Table 4: Errors in digital status and its impacts on State Estimation

Errors due to status coding at NLDC: During implementation of NLDC SCADA/EMS system, it is found that coding and naming of measurements received from one vendor system to other vendor system are different and needs to be mapped as per the recipients philosophy for both analog measurements as well status measurements.

Hence, if philosophy used for coding bits by two vendors does not match with each other, conversion tables are used for mapping different philosophies. Any wrong selection of conversion table can lead to topological errors in the SCADA/EMS system.

It is decided to follow a common status bit coding convention mentioned in *table 5* in order to avoid such errors.

Status Points	Device Status	Bits Codes (Digital)	Value Codes (Analog)	Bits Coding at Control Center 1	Status Interpretation at Control Center 1	Values transferred to other Control Center-2	Bits Coding at Control Center 2	Status Interpretation at Control Center 2
atus	BETWEEN	00	0	00	BETWEEN	0	00	BETWEEN
int st	OPEN	01	1	01	OPEN	1	01	OPEN
ble po	CLOSE	10	2	10	CLOSE	2	10	CLOSE
Doul	INVALID	11	3	11	INVALID	3	11	INVALID
point tus	OPEN	0	0	0	OPEN	0	0	OPEN
Single sta	CLOSE	1	1	1	CLOSE	1	1	CLOSE

 Table 5: Standard convention for 1-bit and 2-bit status to be used

Mapping errors in digital data at NLDC: The Load Despatch Centers in India have a multivendor proprietary SCADA/EMS system and each system has a different naming convention of SCADA and ICCP tags. At the time of integration of NLDC with RLDCs ICCP mapping was done at NLDC end in order to get the data. This mapping was done in ".csv" files (shown in *fig.28*) of MS-Excel software and populated in the database while SCADA/EMS on-lining. Any error in the digital data mapping could lead to erroneous analog data.

Kicrosoft Excel - Point_Mapping_AREVA_GE.csv			Micr	osoft E	kcel - SR	_Point_	ICCPName	.csv
Eile Edit Yiew Insert Format Tools Data Winde	ow <u>H</u> elp		III) EI	le <u>E</u> dit	⊻iew	Insert	Format	Iools [
0 🗃 🖬 🖪 🖂 🖾 🐬 📖 🐇 🖻 🕰 • 🗹	9-0	Digital Mapping	i 🗋 🖻	2 🖬	a 剑	30	1 🧐 📖	*
B24800 - 1 80676		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A2	1836	-	fx 1	80676	
A	в			A		1	в	
24800 NRNDR CS.CB.E 06.STTS	80676		21827	80667	SRLDC	NLDC	STATUS	80667
24801 NRNDR CS.CB.E 07.STTS	80673		121828	80668	SRLDC	NLDC	STATUS	80668
24802 NRNDR CS.CB.E T1.STTS	80675 🔨		721829	80669	SRLDC	NLDC	STATUS	80669
24803 NRNDR CS.CB.E T2.STTS	80674		21830	80670	SRLDC	NLDC	STATUS	80670
24804 NRNDR CS.CB.F D4 1.STTS	80669		21831	80671	SRLDC	NLDC	STATUS	80671
24805 NRNDR CS.CB.F D4 2.STTS	80670		21832	80672	SRLDC	NLDC	STATUS	80672
24806 NRNDR CS.CB.F D4 3.STTS	80668 👞		21833	80673	SRLDC	NLDC	STATUS	80673
24807 NRNDR CS.CB.F D5 1.STTS	80666		21834	80674	SRLDC	NLDC	STATUS	80674
24808 NRNDR CS.CB.F D5 2.STTS	80667		21835	80675	SRLDC	NLDC	STATUS	80675
24809 NRNDR CS.CB.F D5 3.STTS	80665		21836	80676	SRLDC	NLDC	STATUS	80676
24810 NRNDR CS.IS.E TI BY.STTS	80639		2183Z	80677	SRLDC	NLDC	STATUS	80677
24811 NRNDR CS.IS.E T2 BY.STTS	80634		21838	80678	SRLDC	NLDC	STATUS	80678
t								
	Digital p	oint in GE system defined by XA21	No. and X	(A21 N	ame (IC	CP No.	and ICC	P Name)
			-					
Digital point in Areva system defined by <substation< td=""><td>n Name>.<de< td=""><td>evice Type>.<device>.<point type=""></point></device></td><td>></td><td></td><td></td><td></td><td></td><td></td></de<></td></substation<>	n Name>. <de< td=""><td>evice Type>.<device>.<point type=""></point></device></td><td>></td><td></td><td></td><td></td><td></td><td></td></de<>	evice Type>. <device>.<point type=""></point></device>	>					

- Mapping is done in Excel sheets (as shown above).
- > 6 Excel sheets are maintained (3 for analog mapping, 3 for digital mapping).
- 1 excel sheet is maintained for Reverse database (i.e. the data which the RLDC want to acquire from NLDC through ICCP).

```
Figure 28: Digital Mapping of database in ".csv" files for GE system in WRLDC and SRLDC.
```

4.2 Observability of the network

If the real-time measurements are not sufficient to analyse the entire network then the network is said to be un-observable and State Estimator cannot be solved. Therefore, it is important to have sufficient measurements at suitable locations should be available in the network in order to make it observable. Sometimes if there is loss of measurements or insufficient measurements to make the system observable, appropriate pseudo measurements will be used to make the system observable.

Figure 29: Non-observability of a Network

In the above network " δ " symbol represents the observable part of the network. Load MW and MVAr cannot be estimated and hence PSEUDO measurements are used to make that part observable (or solvable).

4.3 Equipment Parameters Errors

Since State Estimation requires correct model of the network, incorrect parameters of various power system equipment impact the State Estimator output. *Table 6* indicates some of the impacts due to incorrect parameters in State Estimation.

Error in modeling related data	Impact on State Estimation
Incorrect Line Parameter	Causes change in impedance of paths, hence different flows than actual, and change in the estimated angles at the station buses.
Incorrect Transformer Parameters and Taps	Changes in voltage drops across the transformers.
Missing reactors or incorrect nominal MVAR rating	Contribute to voltage problems.

Table 6: Errors in other data and its impacts on State Estimation

4.4 Different sign conventions of analogs

Analog Data transfer includes data such as Active Power, Reactive Power, voltage, Amperes, Frequency, etc. Different sign convention of data is followed at many SLDCs and RLDCs. A compilation of sign convention followed at RLDCs is given in *Table 7*.

	Analog data								
Analog	Positive	Negative	Sign	Sign	Sign	Sign	Sign		
Data	Sign	Sign	convention	convention	convention	convention	convention		
	possibility	possibility	at NRLDC	at ERLDC	at WRLDC	at SRLDC	at NERLDC		
Line	Yes	Yes	Export: +ve						
MW			Import: -ve						
Line	Yes	Yes	Export: +ve						
MVAR			Import: -ve						
Line	Yes	Yes	Export: +ve						
Amp.			Import: -ve						
Bus KV	Yes	No	+ve	+ve	+ve	+ve	+ve		
Bus HZ	Yes	No	+ve	+ve	+ve	+ve	+ve		
Trf. Pri.	Yes	Yes	Export: +ve						
MW/			Import: +ve	Import: -ve	Import: -ve	Import: -ve	Import: -ve		
MVAR									
Trf. Sec.	Yes	Yes	Export: +ve						
MW/			Import: +ve	Import: -ve	Import: -ve	Import: -ve	Import: -ve		
MVAR									
Gen.	Yes	Yes	Export: -ve						
Trf. Pri.			Import: +ve						
MW/									
MVAR									
Gen.	Same as								
Trf. Sec.	unit MW/								

MW/	MVAR	MVAR	MVAR	MVAR	MVAR	MVAR	MVAR
MVAR							
Unit	Yes	Yes	Export: +ve				
MW/			Import: -ve				
MVAR							
Load	Yes	Yes	Export: -ve				
MW/			Import: +ve				
MVAR							
Reactor	Yes	No	+ve	+ve	+ve	+ve	+ve
MVAR							
Capacit			+ve	+ve	+ve	+ve	+ve
or							
MVAR							
IR	Yes	Yes	Export: -ve				
Exch.			Import: +ve				

able 7. Sign convention of analog data in ReDe	Table 7	7: S	ign	convent	ion of	analo	og data	in	RLD	Cs
--	---------	------	-----	---------	--------	-------	---------	----	-----	----

Different sign conventions used for import and export of power is shown in the *fig.30* below.

Figure 30: Two cases of sign convention for import/export of power

The sign conventions should be taken care of as it gets transferred to SE application and can cause serious mismatch and act as feeding bad-data to the SE. If the proper sign convention is missed during assigning telemetry values, a wrong starting point is given to the state estimator which may result in non-convergence.

4.5 Analog data errors

Incorrect or erroneous measurement needs to be identified and corrected in order to improve the state estimator solution.

Error in analog measurement in	Impact on State Estimation
Line	If the redundant measurement is available then it may reduce the error as in subsequent iterations the weightage of that erroneous measurement would be reduced by the SE application. If the redundant measurement is not available then the result depends upon the availability and quality of neighboring measurements.
Bus Voltage	It will affect the solution by acting as a bad input to the state Estimator

	equation corresponding to that measurement. The Estimate of this measurement will largely depend on Line and Transformer Parameters, Transformer Taps and Quality and accuracy of other measurements on that node.
Generator	Might force increased or decreased generation at the station, and change in generation of other units or plants.
Load	Change in power consumption, hence change in flows, and total generation.

Table 8: Impact of incorrect analog data on state estimation

Errors due to mapping errors in analog data at NLDC: The Load Despatch Centers in India have a multivendor proprietary SCADA/EMS system and each system has its own methodology in naming convention of SCADA and ICCP tags. At the time of integration of NLDC with RLDCs ICCP mapping was done at NLDC end in order to get the data. This mapping was done in ".csv" files (shown in *fig.31*) of MS-Excel software and populated in the database while SCADA/EMS onlining. Any error in the mapping could lead to erroneous analog data.

6 Excel sheets are maintained (3 for analog mapping, 3 for digital mapping).
 1 excel sheet is maintained for Reverse database (i.e. the data which the RLD)

1 excel sheet is maintained for Reverse database (i.e. the data which the RLDC want to acquire from NLDC through ICCP).

Figure 31: Analog Mapping of database in".csv" files for GE system in WRLDC and SRLDC

4.6 Impact of incorrect model

In State Estimator output it is many-a-times found that even after closing the circuit breaker and isolator position the corresponding device does not connect to the bus due to incorrect modeling.

The following example case describes the issues in state estimation due to wrong modeling.

Figure 32: Double main bus with wrong isolator connectivity

For a double main bus system as shown in the above case, the line A is connected to Bus 2 in field through ISOB feeding the load A. Suppose say, that in state estimation model (in LDC) it is modeled as connected to bus 1. As long as the bus coupler is closed, this error has no effect on the connectivity since both the buses are connected together and Line A would be feeding both the loads. But if the bus coupler is open, in the field, Line A is actually feeding only Load A. However due to incorrect modelling in State Estimation (in LDC), Line A would be feeding Load B (instead of Load A). This may lead to incorrect State Estimation results. This is a case of modeling error of the network.

It is important to make sure the model that is used for State Estimation is correct. State Estimation will help to identifying such model errors.

5. SUGGESTIONS FOR TUNING OF STATE ESTIMATOR

Proper tuning of state estimator is required in order to get result close to the actual scenario. All the analog and digital status required as an input for state estimation is acquired from site and transferred to Control Centre with the help of a sophisticated SCADA system but there may be some errors, discrepancies, etc. which needs to be addressed.

By proper tuning of State Estimator application, maintaining SCADA database and network database (network parameters), we can get very good results in the state estimator application and use it for further studies in order to assist the Grid Operator in real time monitoring and decision making.

5.1 Topology Correction

One of the major factors which let the State Estimator solution deviate from the actual scenario is the incorrect topology which depends upon the status of switching devices. Due to some telemetry errors, sometimes, the status information (for Circuit breakers and isolators) may not be telemetered correctly (open status may come in as closed and vice versa) to the control centers. Sometimes, the status information may not be coming in at all and may show up as 'Suspect'. Sometimes, the analog measurement corresponding to a line may come as a non-zero value but the corresponding status information may come as 'open' (with good quality flag). Different vendors handle these different situations differently.

We can use Topology correction approach in which we *CLOSE* all switching devices which have "Suspect", "Between" or "Garbage" status.

Figure 33: Network before Topology Correction

Switching devices with "Suspect" quality status leads to point of conflict as it is not possible to make out whether the associated line is charged or under outage/tripping.

Figure 34: Network after Topology correction

Status of switching devices with "Suspect" quality can be replaced as closed for State Estimator application. Another approach is to keep the last good value. Different vendors may have different approached to handle this. Whatever approach is chosen one has to look at such device status and validate them and get the telemetry issue fixed. *Fig.34* shows one approach of correcting the status information to establish the topology.

Figure 35: Topology correction

The status of switching devices with "Good" Quality remains unchanged.

Using Topology Correction as described earlier we can estimate the status of the switching devices with Suspect/Garbage status quality upto the extent of either opening or closing them. Suppose we close all the switching devices with "Suspect/Garbage" status quality then it will close those switching devices also which have "Suspect" status but are actually OPEN in the field. Another problem arises when the Status Quality of the switching device is "Good" but incorrect. Hence, some manual intervention is also required after this step.

Let us consider two cases as shown below:

	MW	Switching Device OPEN	Switching Device CLOSED
Case 1	= 0	Correct	Ambiguous
Case 2	≠ 0	Ambiguous	Correct

Table 9: Ambiguous situation in digital data

In case 1 the problem arises when switching device is in closed position and in Case 2 the problem arises when the switching device is in Open position. We need to use our own judgment in these two cases and manually replace the status of the switching device as Open or Closed.

The judgment could be made on the following basis –

Basis 1	Calculate Σ MW at that station/bus and if it close to 0 MW including the MW flow
	through the line associated with that suspected switching device then it needs to
	be closed otherwise open.
	*This way of judgment will not work if the line is in floating condition or some
	Analog MW data in that substation is of "Suspect" quality and its other end data
	is also suspect which kills the redundancy. It will also not work if some MW data is

	highly erroneous or some line is not modeled in the database.
Basis 2	If the entire Analog and Digital data in the substation is of "Suspect" quality then
	do the Σ MW=0 by taking the other end measurements on those lines which are
	terminating in the neighboring stations. Do the remaining action as per Basis 1.
Basis 3	Get the status of that line from the Daily Outage status report of the Load
	Dispatch Centers. If the line associated with that switching device is in that report
	and it is under long outage plan then replace the status as open.
	* Do not close the switching device if the line is not in the list of trippings, as it
	could be one of the recent trippings not reported/documented yet.
Basis 4	Communicate with Control Room at the site and get the real status of the
	switching device (or associated line) and replace the status of the switching
	device accordingly.
	[Note: Ideally the Control Centre where the RTU/SAS reports shall have the prime
	responsibility for manual substitution after checking from the field. For instance if the sub-
	LDC corrects the topology at the sub-LDC all the other control centers upward in hierarchy
	viz. SLDC, RLDC and NLDC would get the correct indication (provided there is no manual
	substitution at these control centers).

Table 10: Judgment basis to correct digital data

Topology estimation checks could be performed on network to find ambiguity with respect to the line flows and status of the corresponding switching devices. Coherency warnings generated could be used to tune the network.

The drawback of topology estimation checks in Alstom system is that is does not consider the entire connectivity of the equipment to the bus. It only checks the coherency with the switching device (say Line Isolator) directly connected with the equipment.

In case I, the line MW and MVAR are non-zero with "Good" status and the corresponding isolator "F_L2_L" is OPEN. So a coherency warning is obtained on this device.

In case II, the line MW and MVAR is Zero with "Good" status and the corresponding isolator "F_L7_L" is closed. So a coherency warning is obtained on this device.

By observing and correcting the topology as per these coherency checks the State Estimation solution can be improved.

. opere	3) _0	0 -					Show	All Breakers	19000	e si e spece		
WAZIT_DV	Find Stati	on RTNET Last Solv	/ed: 1	14-Dec-2014 1	1:07:41	H		RTNET	REALTIME	INVAL	ID SOLL	JTION
Northern	Region	Eastern Region	We	stern Regi	on	Southern 1	Region	North-East	Region	т	otal	
Show	all CBs	Show all CBs	1	Show all CB	s	Show all	CBs	Show al	CBs	Sh	iow all 0	CBs
Show all	Isolators	Show all isolators		Show all Isolat	ors	Show all Is	olators	Show all Is	olators	Show	w all Iso	lators
Show 70	5kV CBs	Show 765kV CBs	1	Show 765kV C	Bs	Show 765k	V CBs	Show 765	KV CBs	Sho	w 765k	V CBs
Show 765	Visolators	Show 765kV Isolators	Sh	ow 765kV Isol	lators	Show 765kV	Isolators	Show 765kV	Isolators	Show 2	765kV I:	solators
Show 400kV CBs Show 400kV CBs Show 400kV Isolators Show 400kV Isolators		Show 400kV CBs		Show 400kV C	Bs	Show 400k	V CBs	Show 400	Show 400kV CBs			
		Show 400kV Isolators	Sh	ow 400kV Isol	lators	Show 400kV	Isolators	Show 400kV	Isolators	Show 4	100kV I:	solators
Alarm New	Device Type	Device	ку	Data Source	Status	Coherency Warning	Topolog Modeled	y Estimation Suspect	MW	MVAR	Com	ponents
BASPA_HP	СВ	F_G1	400	Measured		1	- 80		0.0	0.0	UN	66
ASPA_HP	СВ	F_G3	400	Measured		1	10		0.0	0.0	UN	68
BRAB_UP	СВ	F_03	400	Measured		~	101		0.0	0.0		
BRAB_UP	СВ	F_10	400	Measured		1	111		0.0	0.0		
ROSA_UP	CB	F_01	400	Measured		1	10		0.0	0.0		
PRIC1_UP	СВ	F_07	400	Manual	-	1	- 22		0.0	0.0		
PRIC1_UP	СВ	F_08	400	Manual		1	10		0.0	0.0		
TN_DIH	CB	F_W1	400	Measured		1	- 111		0.0	0.0		
RKPR_PG	CB	RN_400_4_LN1	400	Manual		1	10		0.0	0.0	LD	1741
RKPR_PG	СВ	RN_400_5_LN2	400	Manual		- V	23		0.0	0.0	LD	1742
BALIA_PG	CB	RN_400_1_LN1	400	Manual		1	- 10		0.0	0.0	LD	1748
BALIA_PG	СВ	RN_400_2_LN2	400	Manual		1	121		0.0	0.0	LD	1749
	CD	DN 400 9 1 M9	400	Manual		1	100		0.0	0.0	10	1750
SALIA_PG	CD	NN_400_3_LN3	400	Manual	_	~	1000		0.0	0.0		11.30

Figure 37: Coherency warnings for digital data

By attending all the Coherency warnings as described above, the topology can be further corrected.

5.2 Adding Pseudo measurements

In case of un-observable network due to insufficient real-time telemetry available at the control center, pseudo measurements will be used to make the system observable. There are different approaches of providing pseudo measurements⁸. Different vendors may provide different approaches. One approach is to manually replace the unavailable measurements by some significant value based on operator's experience or some historical data.

Sometimes based on the vendor, State Estimation will add Pseudo measurements⁸.

Use of Pseudo measurements in Alstom system at NLDC: In case load measurements are not available in real time, modeled load is taken by the State Estimator as pseudo measurements for estimation purpose. These modeled loads are fraction of forecasted area load. The measurements associated with Loads of the area are archived and summed to get the total area load of any area. This is done for all the areas defined in NLDC. The areas defined are the constituents of all 5 RLDC. Last year area load is used as scheduled area load for the current year. During non-availability of any load, the individual load is calculated as fraction of that load.

⁸IEEE State Estimation Working Group Panel Session on "Experiences of Using Pseudo Measurements in State Estimation in Control Centers", IEEE PES General Meeting, July 2011. (http://www1.ece.neu.edu/~abur/ieee/wg.html)

Figure 38: Calculation of Pseudo measurements for Loads

5.3 Parameters verification

In order to correct the parameters of the equipments it is required to have a display in which the parameters can be changed in real-time without requirement of any database on-lining.

A sample snapshot taken from NLDC EMS (Alstom system) is given below -

Network Analyst L	Network Analyst Line Data											rmer Data	Bus N	fismatch Top	ology Estimat	ion Lin	e Parame	ters Tra	nsformer Parameters
RTNET Last Solved: 14-De	ec-2014 11:07:41				RINE	T P	EALTIME	INVALID SC	RTNET Last Solved: 14-Dec-2014 11:07:41					RTNET REALTIME INVALID SOLUTION					
Northern Region	Eastern Region	v	estern	Region	Souther	n Regi	on No	xth-East I	Northern Reg	jion	Easter	n Region	Wester	n Region	South	ern Re	gion	Nort	h-East Region
Show All Lines	Show All Lines		Show Al	Lines	Show	All Lines		Show All Lin	Show all ICTs		Show	all ICTs	Show	all ICTs	Shor	w all IC	ſs	S	how all ICTs
Show 765kV Lines	Show 765kV Lines		show 765	KV Lines	Show 7	SSKV Line	5	Show 765KV I	Show 765 kV IC	Ts	Show 76	6 kV ICTs	Show 76	5 kV ICTs	Show	765 kV	ICTs	Sho	w 765 kV ICTs
Show 400kV Lines	Show 400kV Lines		Show 400	kV Lines	Show 4	DOKV Line	s	Show 400kV I	Show 400 kV IC	Ts	Show 40	IO KV ICTs	Show 40	0 KV ICTs	Show	400 KV	ICTS	Sho	w 400 kV ICTs
Line	From Station/ To Station	MW	MVAR	Line Lengt	h Imped R	ance X	Admit Cond.	ttance Suscep.	Station	Trf. ID	Node	- Impeda R	nce - X	- Admit G	tance - B	- C Tap Pos.	LTC det Type	ails - Min/ Max	Nominal/ Step Size
G_ANPAC_UNAOG	From ANPAC UP	12	311	409.0	0.29	6.38	70.2	-1564	PANIPAT (PANPT_BB)	FE_T1	ET1	0.14	3.00	155.2	-3326	9.0	TB2	1.0 17.0	9.0 -0.0
G ANPAD UNAOG	From ANPAD UP	1	-333	409.0	0.29	6.38	70.2	-1564	PANIPAT (PANPT_BB)	FE_T2	ET2	0.14	3.00	155.2	-3326	9.0	TB2	1.0 17.0	9.0 -0.0
UN 1	To <u>UNAOG UP</u>	0	0						DEHAR PS (DEHAR_BB)	FE_T1	ET1	2.50	5.08	779.9	-1585	1.0	TB2	1.0 17.0	9.0 -0.0
G_ANPAC_ANPAD	From ANPAC UP	-8 8	153 -158	10.0	0.02	0.21	4290.0	-47908	BHIWANI (BHIWN_BB)	FE_T1	ET1	0.13	2.53	202.6	-3942	13.0	TB2	1.0 17.0	9.0 -0.0
G_AGRA_FATPR1	From AGRA PG	-169	.99	325.0	0.23	5.07	88.3	-1968	BAMNAULI (BAMNL_DV)	FE_T1	ET1	0.00	3.97	0.0	-2519	9.0	TB2	1.0 17.0	9.0 -0.0
UN 1	To <u>FATPR PG</u>	170	-116						BAMNAULI (BAMNL_DV)	FE_T2	ET2	0.00	3.97	0.0	-2519	9.0	TB2	1.0 17.0	9.0 -0.0
G_AGRA_FATPR2	From <u>AGRA_PG</u> To <u>EATPR_PG</u>	-165 165	-102 -119	333.0	0.23	5.19	86.2	.1921	BAMNAULI (BAMNL_DV)	FE_T3	ET3	0.00	3.97	0.0	-2519	9.0	TB2	1.0 17.0	9.0 -0.0
G_BALIA_LKNW11	From BALIA PG	215	-228	316.0	0.22	4.93	90.8	-2024	BAMNAULI (BAMNL_DV)	FE_T4	ET4	0.00	3.97	0.0	-2519	9.0	TB2	1.0 17.0	9.0 -0.0
UN 1	To LKNW1_PG	-214	31			0.70			BAWANA (BWANA_DV)	FE_T1	ET1	0.00	3.97	0.0	-2519	9.0	TB2	1.0 17.0	9.0 -0,0
G_BHIWN_MOGA_1	To MOGA DG	726	2	178.0	0.12	2.78	161.3	-3594	BAWANA	FE_T2	ET2	0.00	3.97	0.0	-2519	9.0	TB2	1.0	9.0

Figure 39: Online editing of equipment's parameters

5.4 Residual check of measurements

For each measurement used in the state Estimator algorithm a residual is computed which is the difference between measured value and estimated value. The list of such residuals should be seen in order to check such cases of bad data. It is expected that the good SE solution for a good measurement set, would have small residuals. Large residual indicates a potential wrong state estimation results. Sometimes the measurements may not be correct. Therefore large residuals need to be investigated. Each vendor may provide displays to look at residuals.

Cost Summa	Update List	1					
Station	LN2	Bus #	Cost	Cost (MW/MVAR)	Residual (MW/MVAR)	(MW/MVAR)	(MW/MVAR)
GAJWL_AP	F_GAJWL_SNKA	3358	1497	1497 0	249.48 -2.58	0.02406 0.02406	1.0000 1.0000
GAJWL_AP	F_GAJWL_SNKA	3358	1495	1495 0	249.30 -1.35	0.02406 0.02406	1.0000
SNKAR_AP	F_GAJWL_SNKA	3378	1488	1480	-248.03 18.62	0.02406 0.02406	1.0000
SNKAR_AP	F_GAJWL_SNKA	3378	1470	1464 7	-246.66 16.85	0.02406 0.02406	1.0000
AGRA_PG	G_AGRAMEER	2752	649	387 262	343.63	0.00328 0.00328	1.0000
KISHN_CS	F_KISHN_PATN	2575	452	0 452	-1.03 -206.48	0.01061 0.01061	1.0000
FATPR_PG	F_FATPR_MAIN	3002	311	258 53	217.86 98.96	0.00543 0.00543	1.0000
ALMTY_TN	F_ALMAT_NELR	3610	302	290 12	-226.93 46.62	0.00563 0.00563	1.0000
AGRA_PG	F_AGRA_SIKA	2744	269	129 141	-151.16 158.14	0.00563 0.00563	1.0000
NELRC_CS	F_ALMAT_NELR	5008	229	222	198.50 -36.41	0.00563	1.0000
SJNPR_PG	F_BRELY_SJNP	3098	218	214	354.47	0.00170	1.0000
FATPR_PG	F_ALBAD_FATP	3002	199	172	-175.02	0.00563	1.0000
INDR4_MP	F_IND40_ISP4	4109	192	191	-184.46	0.00563	1.0000

A sample snapshot taken from NLDC EMS (Alstom system) is given below -

Figure 40: Residual check of measurements

5.5 Iterations check for measurements

The State Estimator application uses Weighted Least Square algorithm in an iterative manner. By considering the various information available for each iteration step it is easy to track the problematic area.

A sample snapshot taken from NLDC EMS (Alstom system) is shown as *fig.41* below.

Cost Summary	⊾ Gross	RI	INET REA	ALTIME	INVALID	SOLUTION				
	Ending Time: 1	7-Jan-2015	12:48 11				CPU: 17	008 ms		
ITERMX							CPU:	ms		
REFACTOR	Iteration: Cost Unsolved Buse: CPU:	70 15465976 s: 1299 161	Station ROURK_CS ROURK_CS ms MKTS4_PS	KV 400.0 400.0 400.0	BUS 2433 2433 585	Radians -0.0923 -0.0923 -0.0893	Station FATPR_PG FATPR_PG FATPR_PG	KV 400.0 400.0 400.0	BUS 3002 3002 3002	P.U. Volt -9.6709 0.4478 0.4478
REFACTOR	Iteration: Cost Unsolved Buse: CPU:	69 15591911 5 1352 162	Station ROURK_CS ROURK_CS ms MKTS4_PS	KV 400.0 400.0 400.0	BUS 2433 2433 585	Radians -0.0954 -0.0954 -0.0940	Station FATPR_PG FATPR_PG FATPR_PG	KV 400.0 400.0 400.0	BUS 3002 3002 3002	P.U. Volt 4.8623 -0.2841 -0.2841
REFACTOR	Iteration: Cost Unsolved Buses CPU:	68 15668564 5: 1351 160	Station ROURK_CS ROURK_CS ms HEERP_RS	KV 400.0 400.0 400.0	BUS 2433 2433 653	Radians -0.0977 -0.0977 0.0956	Station FATPR_PG FATPR_PG FATPR_PG	KV 400.0 400.0 400.0	BUS 3002 3002 3002	P.U. Volt -10.3890 0.5103 0.5103
REFACTOR	Iteration:	67	Station	KV	BUS	Radians	Station	KV	BUS	P.U. Volt

5.6 Accuracy class assignments

Various accuracy classes are used for the analog data and it is generally defined in groups of identical type of equipments such as Units, Lines, ICTs, etc. Each analog data is assigned an accuracy class as per its defined group.

A sample snapshot taken from Alstom system shows different accuracy classes.

Real-1	Time N	etwork F	arame	ters	SE Controls	Ptocess Paran	ieters ~Ac	curacy Classes	~ Schedule/Los	s Details S	avecase Paramete		
RTNET La	ist Solved	: 10-Apr-20	08 16:07:	29				RTN	T REALTIME VALID SOLUTION				
Accuracy Class ID	Default Class?	Potential XF	Current XF	or (Maxin Xducer	A/D Converter	Base Value	Break Point	Manual STDEV P.U.	STDEV Base - Ave. Est	STDEV for SE?	Add STDEV to Computed?		
MEAS	10.	1.0	1.0	1.0	1.0		3	0.030		×			
LD	10	1.0	1.0	1.0	1.0		3	0.100		1			
UN		1.0	1.0	1.0	1.0		3	0.030		3			
DCLN		1.0	1.0	1.0	1.0		3	0.030		×			
KCL.	10	1.0	1.0	1.0	1.0	100.0	50	0.001		1			
TAP	10	1.0	1.0	1.0	1.0		2	0.030		1			
SVS	10	1.0	1.0	1.0	1.0		3	0.030		8			
LNHK	- 12	1.0	1.0	1.0	1.0	100.0	3	0.030		1			
LNMK	10	1.0	1.0	1.0	1.0	100.0	3	0.030		8			
LNLK		1.0	1.0	1.0	1.0	100.0	3	0.040		30			
XFHK	10	1.0	1.0	1.0	1.0	100.0	3	0.020		1			
XFMK	10	1.0	1.0	1.0	1.0	100.0	3	0.030		30			
XFLK	- 10	1.0	1.0	1.0	1.0	100.0	3	0.030		3			
UNHW	10	1.0	1.0	1.0	1.0	100.0	15	0.010		30			
UNMW	10	1.0	1.0	1.0	1.0	100.0	15	0.100		*			
UNLW	100	1.0	1.0	1.0	1.0	100.0	15	1.000		1			
KV	10	1.0	1.0	1.0	1.0	100.0	3	0.010		*			

Figure 42: Accuracy class assignments of measurements

5.7 Bus Measurement Mismatch

After the State Estimator gives its output then a list the mismatches at each bus is generated and it can be seen in order to find the areas to focus upon for tuning. A sample snapshot taken from Alstom EMS system is given below:

Real-T	ime Net	work S	olution Ana	alysis	Network Sol	Online Seq. ution Recor	d - Bus Mis
Residual Tol	lerance is:	1 M	V/MVAR	RTNET RE	ALTIME		
Station	Voltage	Bus #	MW Residual	Station	Voltage	Bus #	MVAR Residual
D_THM_NT	16	2700	1332.1	AMRIT_PG	220	5835	2559.7
AMRIT_PG	220	5835	1285.7	ALMTY_TN	110	3613	2418.4
UNAOG_UP	765	1218	825.8	KODAM_DV	11	1792	767.8
SMDR2_CS	11	4953	680.9	ANPAC_UP	11	1205	712.8
VIND4_CS	11	5240	604.6	SASAN_CS	11	5229	639.8
ANPAC_UP	11	1204	562.5	D_THM_NT	16	2700	381.7
JPNGR_CS	11	5506	528.8	GJKPS_CS	400	5060	344.0
VTPS4_AP	11	3365	448.5	BRSGP_MP	11	4090	101.9
KRPTM_AP	11	3392	434.1	ROSA_UP	11	1211	94.8
VIND_CS	11	5193	423.7	ROSA_UP	11	1212	67.0
VIND_CS	11	5194	419.7	RAJWT_RS	11	807	40.9
VADIN_GE	11	4786	389.8	KISHN_CS	400	2575	12.1
SASAN_CS	11	5228	309.0	NALAG_PG	400	2837	9.5
ADANI_RS	11	866	252.8	RAMPR_NJ	400	2643	9.5
SINGR_NT	11	2722	247.6	NALAG_PG	400	2838	9.3
CHM_1_NH	400	2613	239.0	NALAG_PG	400	2836	9.3
ANPAR_UP	21	891	213.6	IL_FS_CS	11	4968	8.7
SUGEN_IP	11	5221	207.4	BHIWN_BB	400	65	7.2
RAPPC_NP	16	2659	180.0	GAYA_CS	765	2533	6.1
GA.ML AP	220	3360	175.7	TCRNC CS	400	5030	5.6

Figure 43: Bus measurement mismatch

5.8 External Network Modeling

The external network modeling for every LDC is important in order to get proper results in Contingency Analysis. The external network may not be updated frequently and the topology of equipments at low voltage levels need not be very accurate but it is should be done at each LDCs upto some extent. Some of the discussions at IEEE Panel sessions^{9,10,11,12} may serve as good reference material to understand good industry practices in external network modeling.

Presentations at the IEEE Panel Session on External model and internal model inaccuracies impacting State Estimator Solution Quality for Reliability and Market Operations, 2014 IEEE PES General meeting, July 2014:

⁹ Hongming Zhang, Slavin Kincic," West wide System Model (WSM): Present Challenges, Continued Improvements & Solution Accuracy"

¹⁰Jay Dondeti, Pavan Addepalle, Chungling Yang, Blake Buescher, "MISO Experiences of Network Model Maintenance – State Estimator and Contingency Analysis".

¹¹Ankit Mishra, Veera Raju Vinnakota, James Bonham, Sirajul Chowdhury, Brian Cummins," Experiences at California ISO in supporting State Estimator solution accuracy due to external model for reliability and market operations".

¹²Sriram Ramesh, Tim Murphy, Dave Krueger, Yuan Li, Audrey Newcomb," ISO NE Experiences with Internal and External Model Impacts on the State Estimator".

5.9 Inserting calculated values on non-measured loads

Some of the State Estimation Algorithms does not try to change the MW and MVAR corresponding to loads. It either uses the real-time data-telemetry assigned to it or a Pseudo measurement taken from Load Scheduling (or any other source). If a Pseudo measurement is used then it has a high uncertainty level. In order to improve the State Estimator solution the value of Load can be calculated online and inserted into the measurement of truncated loads. The most common way to calculate the Loads is by Bus Summation and equating the same to Zero.

Figure 44: Inserting calculated values on non-measured loads

6. SPECIAL CASES OF MODELING

A number of Power System components needs to be modeled in a special manner in order to get the appropriate functional behavior out of it as per the operational design.

6.1 Units of Pump Storage plants

The generating units of the pump storage plants also have a capability to act as a motor and pump back water from downstream area to the reservoir.

At present the only modification done in the modeling of such units is by specifying its minimum generating capacity as -P (where 'P' is the maximum generating capacity as per the ratings).

Network Analyst Unit Data			50	Max. G Limit, I		Min. Generation (pumping)							
Station Unit	Company	Area KV	Bus #	Manual Include?	Manual	Non-Defai Accuracy Cla	MW Max	- Onic MW Min	R	MVAR Min	Base	MW Output	
PPSP_WB	WBSEB	WBSEB					-				-		
F_H01		400	1651			UN	225	-225	75	-40	0	0	L
F_H02		400	1651			UN	225	-225	75	-40	0	0	
F_H03		400	1651			UN	225	-225	75	-40	0	0	
F_H04		400	1651			UN	225	-225	75	-40	0	0	[

Figure 45: Specifying the Unit MW limits for units of pump storage plants

6.2 Inter-area truncated points

In order to run State Estimator on a limited network, it is required to define the truncated boundary for the same. At the points of truncation at this boundary either the power would be imported or exported based on the Load-Generation balance of the connected power system. So, at the point of truncation either a load needs to be present or a generator. Some of the discussions at IEEE Panel sessions (as indicated in *Section 5.8*) may serve as good reference material to understand good industry practices in external network modeling.

Case at the truncated point	In case a load is modeled	In case a Generator is modeled	In case both Load and Generator are modeled
Export	In service	Out of service	Load – In service Generator – Out of service
Import	Out of service	In service	Generator – In service Load – Out of service

Table 11: Modeling of load and generation at	t Inter-area truncated points
--	-------------------------------

The philosophy followed at NLDC is that only a Load is modeled at the point of truncation and based on the sign convention it acts as either a load or an injection. Though modeling as a load and generator would work for truncation, depending on the system interconnection of the truncated network with the local network, external network modeling may be required.

Case at the truncated point	Only Load is modeled	
Export	In service Mapped data with "positive" value and hence acts as Load	
Import	In service Mapped data with "negative" value and hence acts as Injection	

Table 12: Modeling of load only at Inter-area truncated points

6.3 FSC and TCSC

The FSC/TCSCs are the series capacitive device which change the effective Reactance of the transmission line and facilitates more power transfer through it.

At NLDC the FSC is modeled as a line segment is series with the transmission line with negative reactance. An illustrative representation is shown in *fig.46* below.

Figure 46: Modeling of FSC in series with the line

6.4 HVDC Lines

The HVDC lines are generally modeled as Truncated Loads/Injections with the real-time power flow data on the convertor transformers mapped onto it. The AC filter banks are modeled as a set of Capacitors connected directly to the bus in order to provide the required MVARs. Refer to *Section 9.5* for details.

6.5 Modeling of line in case of a Line Reactor associated with it

At most of the places the Line Reactor is placed on the bus side of the Line Isolator so that it can be used as a Bus Reactor also if required. Moreover the MVAR telemetry received from the site is taken after the point where the Line Reactor has absorbed the rated MVARs from it.

Telemetered Line MVAR from site = Actual Line MVAR – Reactor MVAR

Figure 47: Snapshot of two parallel lines with different MVAr measurements

Different vendors use different methods to handle this condition. Methodology used by M/s Alstom is given below –

One of the ways of handling such cases is by creating such Bus-branch model in which the line entering the station first hits the Line Reactor on a dedicated bus and then gets connected to the main bus.

Figure 48: Modeling comparison with ZBR

In Alstom EMS, a Zero Impedance Branch (termed as ZBR) is modeled along with the line and the measurement from the site is mapped onto the bus end node of it. When a corresponding Bus-Branch model is formed in the SE algorithm then a different bus is formed which separates the Line reactor from the main bus. A snapshot is shown as *fig.49* below.

Bus: 2582 Island 1	407.1 KV 1.018 PU	-25.6 DEO	Remove				
LN			Restore		SIKAR2 0.0 MR	To Station LN2	SIKAR_PG F_AGRA_SIKAR2
LN			Restore	R F AGRA	SIKAR1 0.0 MR MR	To Station LN2 MEAS	SIKAR_PG F_AGRA_SIKAR1
Esti	mated MVAr o	of line 1	Flormowe	430.9 MV	2 365.9 MR	To Station:	AGRA_PG GF_T2
>3F	(i.e. 61 MVA	R)	Flormowe	3 E GF_1	1 305.9 MR -+	To Station: >#2	AGRA_PG GF_T1
ZBR			Ranna	251.0 MVV + F_AGR	205.0 MR +	To Station: 20R	AGRA_PG
UN Tel	emetered MV	AR of	Remove	14.2 MW + F_AGRA 170.4 MW + 1	40.1 MR +- EHRWA2 19.6 MR +-	To Station	BHINNA_PG F_AGRA_BHINNA2
ZDR			Plannerve	20230 MVV	A BASSIS	To Station 2017:	AGRA_PG F_AGRA_BASSES
20R			Remote	142.2 MVV		To Station 20R	AGRA_PG F_AGRA_JAPRS2
ZBR		<	Remove	147.5 MVV 163.6 MVV	61 MR	ZBR: MEAS	AGRA JAPRST
Bus: 2586 Island: 1 4	107.1 KV 1.018 PU	-25.6 DEG	Remove				
78R		meas observable	Reman	F_AGE	RA_JAPRS1	To Station:	AGRA_PG
	MP1		TREITRAVE	148 MVV 🔶	→61.4 MR →	ZBR:	F_AGRA_JAPRS1
	MP 2		Roman	F_AGRA	JAPRS1	To Station:	JAPRS_PG
	MP 3			147.6 MW	106.0 MR 🔶	LN2:	F_AGRA_JAPRS1
CP F_L1	46.6 MR	-		Remove			

Figure 49: Snapshot of Bus Summary in Alstom system with modeling of ZBR

7. FACTORS TO IMPROVE USAGE OF STATE ESTIMATION

Currently at all RLDCs and SLDCs, EMS systems are being upgraded by new systems. It is right time to look at factors that would improve the usage of State Estimation at all Load Dispatch Centers.

Some of the factors that would improve the usage of State Estimation and other application functions are presented below:

- Get the EMS product customized as per the specifications and requirements.
- Detailed Training on EMS System to the Core Engineers will be very useful to perform effective testing of the system. There could be training for all the engineers after SAT as well.
- Adequate man-power dedicated to SCADA-EMS should be provided in all SLDCs, RLDCs and NLDC. Management may review the objectives of using the EMS system and assess the man-power requirement. Initial study indicated the necessity of increasing the manpower to improve the usage of State Estimation and other EMS Application functions in RLDC/SLDCs.
- Training on EMS should be organized at regular intervals.
- Generating EMS performance reports on a daily basis and its review by the management on weekly basis.
- A process to chase the unavailable telemetry should be developed among the LDCs.

8. PRESENT STATUS OF THE STATE ESTIMATOR AT ALL LDCs

The proper functioning and utilization of State Estimator needs to be ensured at each Load Despatch Centre of state level, regional level and national level.

In most of the State Load Despatch Centres the solution of State Estimator application is Invalid for most of the time. In Regional and National Load Despatch Centres also the State Estimator solution is not satisfactory due to several reasons such as telemetry errors, modeling issues in database, unavailability of real-time telemetry due to communication or other issues, etc.

9. SUGGESTIONS ON VARIOUS ISSUES

A number of issues related to State Estimator database modeling, tuning, validation, etc. needs to be kept in mind while working with EMS applications. Some key issues are discussed below.

9.1 Truncation level of network

The truncation of network affects the significance of output of Contingency analysis as the parallel flows of the network cannot be taken into account after truncation. Some of the discussions at IEEE Panel sessions (as discussed in *Section 5.8*) may serve as good reference material to understand good industry practices in external network modeling.

Load Despatch Center	Network to be considered after truncation	Remarks
NRLDC	400kV level and above	Large 400kV level and above network. If required, as per industry practices, some part of the 220 kV level may need to be modeled.
ERLDC	400kV level and above	Large 400kV level and above network. If required, as per industry practices, some part of the 220 kV level may need to be modeled.
WRLDC	400kV level and above	Large 400kV level and above network. If required, as per industry practices, some part of the 220 kV level may need to be modeled.
SRLDC	400kV level and above	Large 400kV level and above network. If required, as per industry practices, some part of the 220 kV level may need to be modeled.
NERLDC	132kV level and above	
NLDC	400kV level and above	Huge mesh of 400kV level and above network. If required, as per industry practices, some part of the 220 kV level may need to be modeled.
All SLDCs	At least entire State Network upto 132kV	If required, as per industry practices, some part of the 132 kV level may need to be modeled.

The truncation of network may be done at the LDCs as per the following *table 13*:

Table 13: Truncation level for SE at various LDCs

9.2 Load and Injection at truncated points

The easiest way to address and accommodate the change in power flow at the truncated points on the criteria of whether the truncated point is injecting power or drawing power from the network is by Modeling a Load at that truncated point and mapping the real-time measurement on it as indicated in *Table 14*. Another practice is model it as a load and generator based on the direction of power flow as indicated in *Table 15*. However, as per industry practices, some part of the truncated network (example 220 kV level network) level may need to be modeled. This has to be properly reviewed in each case and proper truncation should be done for modeling the network.

Case	Sign of analog mapped on Load as received from SCADA	Behaviour
Import of power at	Negative	Injection of Power into the network (acts as generator)

Table 14: Modeling of Load at truncated points for SE

Case	Sign of analog mapped on Load as received from SCADA	Sign of analog mapped on Generator as received from SCADA	Behaviour
Import of power at truncated point	Zero	Positive G = y MW G = y MW L = 0 MW	Injection of Power into the network (acts as generator)
Export of power at truncated point	Positive G = 0 MW G	Zero	Drawl of power from the network (acts as load)

Table 15: Modeling of Load and generator at truncated points for SE

9.3 Pump Storage Plants

In case of pump storage plants the minimum generation value (refer to *fig.45*) should be put as negative of the maximum rated generation capability of the unit. By doing this the State Estimator will consider the unit behavior in the following manner –

Case	Sign of analog mapped on Load as received from SCADA	Estimated value (If Maximum Generation MW parameter is P and Minimum is 0)	Estimated value (If Maximum Generation MW parameter is P and Minimum is –P)
Unit in	Magnitude: P	Р	Р

generation mode	Sign: Positive		
Unit in pumping mode	Magnitude: P Sign: Negative	0 (will not go beyond the minimum rated limit)	-P

9.4 FSC/TCSC Modeling

The easiest way to model an FSC is by modeling a line in form of line segments (facility provided by most vendors) and the assigning negative Reactance value to the line segment corresponding to FSC component as shown below –

Figure 50: Modeling of FSC as a line segment in series with the line

9.5 HVDC Modeling

The easiest way to handle HVDC lines in Network applications is by truncating it, modeling a Load/Injection at its place and mapping the real-time power flow data on the convertor transformers on it. The AC filter banks can be modeled as Capacitors with ratings as per the Engineering design specifications. The MVAR data of AC filter bank is not taken into account by the SE. It only checks the connectivity of the capacitor and injects corresponding MVARs into the bus as per its ratings. However each vendor of EMS may provide different mechanisms to model HVDC systems, which need to be considered while modeling these systems.

Some of the examples taken from modeling of HVDC in NLDC SCADA system (M/s Alstom project) are as follows –

Example 1: Mundra(Adani)-Mahendragarh HVDC Bi-pole link is a major link connecting high generation Mundra complex of Gujarat with high load complex of Northern region. It is one of the important inter-regional connectivity between Western and Northern region.

Modeling of Mundra–Mahendragarh HVDC Bipole line is done by modeling two loads at Mundra for Pole 1 and Pole 2 respectively and the same is done at Mahendragarh end also (as shown in *fig.51*).

The real-time Analog data of the Poles is mapped to these loads. In case the power is flowing from Mundra to Mahendragarh then the Analogs received at Mundra end are positive and Mahendragrh end are negative. So, Loads at Mundra consume power and Loads (act as injection in this case) at Mahendragarh inject power into the bus.

Figure 51: Modeling at NLDC for Mundra-Mahendragarh HVDC Bi-pole

Example 2: Vindhyachal B/B HVDC is a station connected by short feeders to Singrauli and Vindhyachal AC stations. It is one of the major connectivity link between Northern Region and Western Region.

Modeling of Vindhyachal B/B is done by modeling two loads at Singrauli station and two loads at Vindhyachal station (as shown in *fig.52*).

The mapping of data at the loads is done as follows -

- a) Singrauli end MW and MVAR data of 400kV Singrauli-Vindhyachal HVDC D/C feeders mapped at modeled loads at Singrauli station.
- b) Vindhyachal AC end MW and MVAR of 400kV Vindhyachal AC-Vindhyachal HVDC D/C feeders mapped on modeled loads at Vindhyachal AC station.

Figure 52: Modeling at NLDC for Vindhyachal HVDC B/B

Example 3: Sasaram B/B HVDC (also called Pusauli HVDC) is a station with a single block of HVDC with 500MW rated capacity and it is one of the major links of power exchange between Eastern Region with Northern Region. Its Eastern Bus is connected to AC buses of Sasaram station and its Northern bus is connected to Allahabad and Varanasi stations through AC lines (as shown in *fig.53*).

For modeling of HVDC, the Eastern and Northern nodes of HVDC B/B are short-circuited and two loads are modeled after the Line Isolators of Allahabad and Varanasi lines. One load each is modeled at Allahabad and Varanasi end also at the terminating points of the lines with Sasaram (as shown in *fig.53*).

The mapping of data at the loads is done as follows -

- a) Sasaram end MW and MVAR data of 400kV Sasaram-Allahabad and 400kV Sasaram-Varanasi line is mapped on respective modeled load at Sasaram station.
- b) Allahabad end MW and MVAR data of 400kV Allahabad-Sasaram is mapped on the modeled load at Allahabad station.
- c) Varanasi end MW and MVAR data of 400kV Varanasi-Sasaram is mapped on the modeled load at Varanasi station.

Figure 53: Modeling at NLDC for Sasaram HVDC B/B

9.6 Tuning tools

Various tuning tools and online editing displays (as described in the *section 5*) can be used to get a better State Estimator output.

Application/Display helpful in Tuning	Purpose	Section for reference
Topology correction	To correct the topology of the network	6.1
Parameters verification	To check and online edit the equipment parameters	6.3
Residual check of measurements	To identify the measurement causing problem in SE	6.4
Iterations check for buses	Check in an iterative manner to find out the bus leading to non-convergence	6.5
Bus Measurement Mismatch	To check the bus with maximum mismatch in SE output	6.7

Table 17: Use of tuning tools

9.7 Load Scheduling for Pseudo Measurements

In order to get some significant Pseudo Load measurements in case of unavailability of Load data it is required to maintain and update the Load Scheduling data frequently. Refer to *Section 5.2* for details.

9.8 State Estimator validation tools

Various state estimator validating tools such as Dead Equipment's details, equipments residuals and cost summary should be traced in order to gain confidence on the SE results. Proper convergence parameters should be used to get good state estimator results. Each vendor may provide ways to look at different SE performance indices to judge the quality of the results. EMS vendors should be able to provide Daily performance reports of SE for the management level monitoring.

In ERCOT a State Estimator Performance Monitoring Dashboard is used to monitor the various performance related parameters of State Estimation in SCADA/EMS (provided by Alstom). It is known as ERCOT State Estimator Assessment Tool^[13] and is shown in *fig.54* below.

Figure 54: ERCOT State Estimator Assessment Tool

10. COMMON MYTHS

There are a number of myths in the mind of the operator working on State Estimator applications. Some of the myths are discussed in the sections below.

¹³Murali Boddeti, Thinesh Devadhas Mohandas, Sarma (NDR) Nuthalapati, Subhadarshi Sarkar, "SE Performance Requirements for the ERCOT Nodal Market", AREVA User Group Conference Technical Symposium on 'State Estimator Quality/Performance Metrics', 6-10 June 2010, Bellevue, USA.

10.1 SE is not a Load-flow algorithm

State Estimator is based on Weighted Least Square Algorithm and not the conventional loadflow techniques.

10.2 SE does not use frequency data

State Estimator is a single frequency model and hence does not use the Frequency measurements in SCADA. Refer to *Section 2* for details.

10.3 SE does not estimate branch flows directly

State Estimator algorithm estimates voltage and angle at each bus and then calculates the branch flows based on it. Refer to *Section 2* for details.

10.4 No RTU/SAS data does not mean that SE will not run

Unavailability of data from RTU/SAS may sometimes lead to un-observability of the network. Because of the redundancy of measurements, SE will be able to estimate the state even if some RTU/SAS data is not available.

11. PROPOSED ACTION ITEMS

In order to improve the usage of State Estimation at all load dispatch centers in India, based on the initial study, the following action items are suggested:

- a) Initially the RTU/SAS connectivity analysis should be done to establish if sufficient measurements are available (system is observable) to perform state estimation. This should be accomplishing within three months (after the release of this report). If the study indicates that there are no sufficient measurements then steps are to be taken to enhance the measurement set by adding more RTU/SAS to make the system observable. This study would also help to identify new location for placement of RTU/SAS. This is to be treated as very crucial for running state estimation and essential for establishing the current operating state of the system.
- b) Daily status reports of RTU/SAS to be uploaded in the website in appending mode so that its performance could be monitored and action will be taken by RLDCS/NLDC. Monthly reports on status of RTU/SAS should be published and circulated with concerned authorities for immediate action.
- c) A formal process of chasing the telemetry issues should be drafted, approved and followed. This is crucial in handling telemetry issues in timely manner.
- d) Monthly reports on SE results should be published and circulated with concerned authorities for immediate action. Reports shall include hourly, daily convergence details, residuals for line/unit/transformer/load details, etc. These reports shall also include the details of manual overrides of data done to get correct SE results. If required, the State Estimation Tool should be enhanced to have the capability of providing the summary of its performance such as hourly/daily convergence details, residuals for line/unit/transformer/load details, etc.
- e) The correction process should be started from down side i.e. State Load Dispatch Centre, so that real-time data/databases can be rectified with the local inputs and process can be established to run the state estimation without hurdles of data responsibilities.
- f) A user group on State Estimation should be formed in order to develop team-building among the people working in this specialized field. Bi-monthly conference call shall be organized for this group.
- g) Review of staff requirements should be done in order to provide adequate man-power for EMS. Appropriate training shall be provided to all engineers.
- h) The matter regarding non-satisfactory output of State Estimator to be put up to CERC and corresponding enforcement of regulation to be done on priority basis as nonfunctioning of SE could lead to poor Visualization and Situational Awareness which could hamper operator actions during emergencies.
- i) Regulation corresponding to clause (g) above should be issued by SERCs too.
- j) The availability of digital data and analog data is also important while considering synchrophasor measurements which are a part of Unified Real Time Dynamic State Measurement (URTDSM) project under execution by POWERGRID. Linear State Estimator being developed as an application would be useful only if the digital status and analog data from the Phasor Measurement Units (PMUs) is available. This would also serve as a back-up for the conventional State Estimation in the EMS System.

<u>Appendix 1</u>

Summary of Discussions of Meetings at Different RLDCs during December 2014 – January 2015

<u>Gist of Discussion on 14-12-2014 at NLDC - visit of Dr. NDR Sarma (of ERCOT, USA)</u> regarding State Estimator functioning of RLDCs/NLDC

Mr.S.K. Soonee, CEO (POSOCO) welcomed Dr NDR Sarma and expressed his concern over various issues hampering the smooth functioning of EMS applications in POSOCO. He emphasized on the importance of running of State Estimator and its benefits in real-time grid operation. He also advised that a email discussion group should be formed on which executives can post queries, experiences and learning related to state estimators applications and further discussions.

1. Importance and necessity of State Estimation

Some of the participants raised an issue questioning the relevance and importance of SE in Load Despatch Centers. Dr NDR Sarma demonstrated the various roles of SE which clarified the doubts of all participants regarding this matter.

2. Literature available on State Estimator.

CEO (POSOCO) stated that a number of papers has been published on SE but some of the classic papers by Fred Schweppe (3 parts) are a good literature to begin with. Dr NDR Sarma told that Power System Analysis book by Stevenson & Grainger also contains a chapter well-written on SE.

3. Load Flow Vs State Estimation

Dr NDR Sarma explained the difference between Load Flow algorithms and State Estimator's Weighted Least Square Algorithm.

4. Role of SE in determining whether the system is (n-1) secure or not.

A list of contingencies is defined in the RTCA database which is evaluated on the base case taken from the output of SE in real-time. It gives a result whether any violation would occur if a contingency occurs. It will give operator warning and sufficient time to take remedial action. Dr NDR Sarma also emphasized that there are Non-Correctable contingencies also which if occurs in a scenario of "All Loads getting supplied" then a Load Shedding action has to be taken. At ERCOT, shift engineer in the control center, does studies and may come out with some mitigation plans for some contingency violations that may occur due to some forced outages.

5. Un-observable network due to inadequate telemetry.

Dr NDR Sarma told that to maintain observability of the network Pseudo Measurements are used which could be either the last known good quality data of some data taken from the scheduled/modeled/archived values. He also emphasized the importance of redundant measurements in this scenario.

6. Rejection of bad-data from SE algorithm.

Dr NDR Sarma explained that the SE takes the good quality telemetered data and creates subsequent SE equations for the same as per WLS method. It compares the Estimated value with SCADA data and the difference is treated as Residuals. It also uses Chi-square criterion which specifies if there is some bad-data in the measurement sets. If it indicates bad-data then the measurement with maximum Residual is dumped out or assigned less weight in the next iterations. He also mentioned that different vendors of State Estimation may have different ways of handling bad data.

7. Confidence factor in violation shown by output of Real-time Contingency Analysis (RTCA).

Dr Sarma stated that if a violation is shown in the output of RTCA then operator compares the pre-contingent value with the corresponding real-time value in SCADA. If it matches then the operator considers it to be correct depiction of violation and takes necessary action.

8. Handling of missing data from stations due to non-installation of RTUs or other reasons.

Dr NDR Sarma explained that all such missing data is flagged as "Un-initialized" and such data is first checked and compared with the Outage Scheduler list and if not matched then it is manually replaced by the grid operator.

9. Accuracy classes defined for measurements.

Dr Sarma told that the a number of Accuracy classes are defined in ERCOT EMS system based on the measurement types such as Unit measurements, Load measurements, Branch Measurements, etc.

10. State Estimator performance monitoring tools.

ERCOT has developed a software tool named SESTATS to check the various parameters of SE and focusing on the areas affecting solution of SE. Dr. Sarma suggested that if SESTATS is not there as a part of EMS System, one can easily write a program to compute the residuals for every SE run. This can be used to chase discrepancies between SE value and SCADA value. Sometimes this is also useful to correct model errors.

11. Frequency of Model update in ERCOT.

Dr NDR Sarma told that model update in ERCOT is done on weekly basis. All utilities need to tell in advance about commissioning of elements to the ERCOT ISO.

12. Tuning of State Estimator.

Dr NDR Sarma demonstrated various factors affecting the convergence of State Estimator on the real-time SE system of NLDC. He demonstrated on how to handle situation when SE is giving an INVALID solution in ALSTOM EMS. He explained on how to look to non-convergence due to tap estimation issues. He also explained how to look for Cost of SE solution, Topology Estimation, depicting islands and Violations in the SE output, etc.

13. State Estimator at NLDC

State Estimator running at NLDC on All India Network of 400kV and above Voltage Level was demonstrated to Dr NDR Sarma. He tried hands-on tuning of State Estimator on NLDC EMS. He pointed various points to put under consideration while running EMS applications.

<u>Gist of Discussion on 15-12-2014 at NRLDC - visit of Dr. NDR Sarma & Prof. S.C. Srivastava</u> regarding State Estimator functioning of RLDCs/NLDC

CEO (POSOCO), ED (NLDC) & GM (NRLDC) welcomed Dr NDR Sarma and expressed their concern over various issues hampering the smooth functioning of EMS applications in POSOCO. CEO (POSOCO) emphasized on the importance of running of State Estimator and its benefits in realtime grid operation. He also advised that a team comprising of members from NRLDC and corresponding SLDCs should be formed in order to discuss and improve the State Estimator output.

1. Importance and necessity of State Estimation

Dr NDR Sarma gave a brief presentation to demonstrate the various roles of State Estimator which would help he operator in real-time decision making.

2. Literature available on State Estimator.

CEO (POSOCO) stated that a number of papers has been published on SE but some of the classic papers by Fred Schweppe (3 parts) are a good literature to begin with. He also told that the various papers written by Dr NDR Sarma can be referred to get a more practical idea of State Estimator related problems and tuning. Dr NDR Sarma told that Power System Analysis book by Stevenson & Grainger also contains a chapter well-written on SE numericals.

3. Load Flow Vs State Estimation

Dr NDR Sarma explained the difference between Load Flow algorithms and State Estimator's Weighted Least Square Algorithm.

4. Role of SE in determining whether the system is (n-1) secure or not.

A list of contingencies is defined in the RTCA database which is evaluated on the base case taken from the output of SE in real-time. It gives a result whether any violation would occur if a contingency occurs. It will give operator warning and sufficient time to take remedial action. He told that Load Shedding is the last option used by the Grid Operators in ERCOT to maintain Grid Security.

5. Un-observable network due to inadequate telemetry.

Dr NDR Sarma told that to maintain observability of the network Pseudo Measurements are used which could be either the last known good quality data of some data taken from the scheduled/modeled/archived values. He also emphasized that if sufficient redundant measurements are available in the system then the Solution would be better.

6. Rejection of bad-data from SE algorithm.

Dr NDR Sarma explained that the SE takes the good quality telemetered data and creates subsequent SE equations for the same as per WLS method. It compares the estimated value with SCADA data and the difference is treated as Residuals. It also uses Chi-square criterion which specifies if there is some bad-data in the measurement sets. If it indicates bad-data then the measurement with maximum Residual is dumped out or assigned less weight in the next iterations. He also mentioned that different vendors of State Estimation may have different ways of handling bad data.

7. Confidence factor in violation shown by output of Real-time Contingency Analysis (RTCA).

Dr Sarma stated that if a violation is shown in the output of RTCA then operator compares the pre-contingent value with the corresponding real-time value in SCADA before taking necessary action for the same.

8. Accuracy classes defined for measurements.

Dr Sarma told that the a number of Accuracy classes are defined in ERCOT EMS system based on the measurement types such as Unit measurements, Load measurements, Branch Measurements, etc.

9. State Estimator performance monitoring tools.

ERCOT has developed a software tool named SESTATS to check the various parameters of SE. He suggested that if SESTATS is not there as a part of EMS System, one can easily write a program to compute the residuals for every SE run. This can be used to chase discrepancies between SE value and SCADA value. Sometimes this is also useful to correct model errors.

10. Frequency of Model update in ERCOT.

Dr NDR Sarma told that model update in ERCOT is done on weekly basis. All utilities need to tell in advance about commissioning of elements to the ERCOT ISO.

11. State Estimator at NRLDC.

State Estimator running at NRLDC on a truncated network was demonstrated to Dr NDR Sarma. Various displays available in the Siemens system related to EMS applications were shown. He pointed various points to put under consideration while running EMS applications.

12. Topology correction in Siemens EMS system.

Siemens executive demonstrated that the EMS system delivered to NR constituents has a secure of Topology correction in which the Analog Data is compared with the status of corresponding switching devices and if an anomaly is found then it changes the status of the switching device to OPEN/CLOSED depending upon the scenario. Dr NDR Sarma suggested that there should be different flags to enable this feature for CBs and Isolators respectively.

13. Training on EMS features of Siemens system.

Dr NDR Sarma suggested that training at NRLDC should be organized before the beginning of SAT for all respective SLDCs in order to familiarize themselves with the various features of Siemens EMS system. As Uttarakhand SLDC has a EMS system of Alstom so it may coordinate with NLDC for the same.

<u>Gist of Discussion on 21-12-2014 at NERLDC - visit of Dr. NDR Sarma</u> <u>Regarding State Estimator functioning of NERLDC</u>

Mr. S.C. De Chief Manager (NERLDC) welcomed Dr NDR Sarma and other members from NERLDC, ERLDC, WRLDC, NLDC and Alstom representatives located at NERLDC.

1. Importance and necessity of State Estimation

Dr NDR Sarma gave a brief presentation to demonstrate the various roles of State Estimator which would help the operator in real-time decision making. He also referred to the classic papers by Fred Schweppe (3 parts). He explained that NLDC have already uploaded these papers and some other papers written by ERCOT which can be referred to get a more practical idea of State Estimator related problems and tuning. Dr NDR Sarma told that Power System Analysis book by Stevenson & Grainger also contains a chapter well-written on SE.

2. Load Flow Vs State Estimation

Dr NDR Sarma explained the difference between Load Flow algorithms and State Estimator's Weighted Least Square Algorithm.

3. Role of SE in determining whether the system is (n-1) secure or not.

A list of contingencies is defined in the RTCA database which is evaluated on the base case taken from the output of SE in real-time. It gives a result whether any violation would occur if a contingency occurs. It will give operator warning and sufficient time to take remedial action. He told that Load Shedding is the last option used by the Grid Operators in ERCOT to maintain Grid Security. He explained about Remedial Action Schemes (RAS) and Remedial Action Plans (RAPs).

4. Un-observable network due to inadequate telemetry.

Dr NDR Sarma told that to maintain observability of the network Pseudo Measurements are used which could be either the last known good quality data of some data taken from the scheduled/modeled/archived values. He also emphasized that if sufficient redundant measurements are available in the system then the Solution would be better. Concept of observability was discussed. Issue of large amount of non-availability of data from RTUs was also discussed. Dr. Sarma told Alstom people to have displays indicating the status of Communication links.

5. Rejection of bad-data from SE algorithm.

Dr NDR Sarma explained that the SE has the capability of detected bad data in the measurements. It compares the estimated value with SCADA data and the difference is treated as Residuals. It also uses Chi-square criterion which specifies if there is some bad-data in the measurement sets. If it indicates bad-data then the measurement with maximum Residual is dumped out or assigned less weight in the next iterations. He also mentioned that different vendors of State Estimation may have different ways of handling bad data.

6. Accuracy classes defined for measurements.

Dr Sarma told that the a number of Accuracy classes are defined in ERCOT EMS system based on the measurement types such as Unit measurements, Load measurements, Branch Measurements, etc.

7. State Estimator performance monitoring tools.

ERCOT has developed a software tool named SESTATS to check the various parameters of SE. He explained that it is good to have such tools. He suggested that if SESTATS is not there as a part of EMS System, one can easily write a program to compute the residuals for every SE run. This can be used to chase discrepancies between SE value and SCADA value. Sometimes this is also useful to correct model errors.

8. Frequency of Model update in ERCOT.

Dr NDR Sarma told that model update in ERCOT is done on weekly basis. All utilities need to tell in advance about commissioning of elements to the ERCOT ISO.

9. State Estimator at NERLDC.

State Estimator running at NERLDC on a full network (400 kV to 66kV levels) It is running on a regular basis and getting good solutions most of times. RTCA is also running along with SE. Demonstration of SE and RTCA was given to Dr. Sarma. Dr. Sarma explaniend on how to chase invalid solutions and 'Solved with Excessive mismatch' situations. Dr. Sarma suggested that it may be a good idea to truncate the system upto 132kV level at NERLDC in view of issues of getting good updated models at the distribution level. Dr. Sarma explained that at ERCOT they model 345 kV, 138 kV and 69 kV levels. Dr. Sarma explained that in ERCOT tie lines are modeled as DC tie lines. It will be modeled either as a generator or load based on the direction of power flow. HVDC lines can be modeled in the same way in NERLDC.

Gist of Discussion on 22-12-2014 at NERLDC - visit of Dr. NDR Sarma Regarding State Estimator functioning of NERLDC and SLDCs of ASSAM,MEGHALAYA & <u>TRIPURA</u>

Mr.T.S. Singh, GM (NERLDC) welcomed Dr NDR Sarma and other members from NLDC, WRLDC, ERLDC at NERLDC. He advised all to use this opportunity for understanding EMS (SE/RTCA) operation and run it successfully.

1. Importance and necessity of State Estimation.

Dr. Sarma explained the different level of security in power system with simple example. Dr NDR Sarma gave a brief presentation to demonstrate the various roles of State Estimator which would help the operator in real-time decision making. He also referred to the classic papers by Fred Schweppe (3 parts). He explained that NLDC have already uploaded these papers and some other papers written by ERCOT which can be referred to get a more practical idea of State Estimator related problems and tuning. Dr NDR Sarma told that Power System Analysis book by Stevenson & Grainger also contains a chapter well-written on SE.

2. Load Flow Vs State Estimation.

Dr NDR Sarma explained the difference between Load Flow algorithms and State Estimator's Weighted Least Square Algorithm. He also explained how wrong telemetry data can be corrected through WLS method.

3. Role of SE in determining whether the system is (n-1) secure or not.

A list of contingencies is defined in the RTCA database which is evaluated on the base case taken from the output of SE in real-time. It gives a result whether any violation would occur if a contingency occurs. It will give operator warning and sufficient time to take remedial action. He told that Load Shedding is the last option used by the Grid Operators in ERCOT to maintain Grid Security. He explained about Remedial Action Schemes(RAS) which is also known as SPS in INDIA and Remedial Action Plans (RAPs).

4. Un-observable network due to inadequate telemetry.

Observability issue was discussed at length. Dr NDR Sarma told that to maintain observability of the network Pseudo Measurements are used which could be either the last known good quality data of some data taken from the scheduled/modeled/archived values. He also emphasized that if sufficient redundant measurements are available in the system then the Solution would be better. Concept of observability was discussed. Issue of large amount of non-availability of data from RTUs was also discussed. Dr. Sarma told Alstom people to have displays indicating the status of Communication links.

5. Rejection of bad-data from SE algorithm.

Dr NDR Sarma explained that the SE has the capability of detected bad data in the measurements. It compares the estimated value with SCADA data and the difference is treated as Residuals. It also uses Chi-square criterion which specifies if there is some bad-data in the measurement sets. If it indicates bad-data then the measurement with maximum Residual is dumped out or assigned less weight in the next iterations. He also mentioned that different vendors of State Estimation may have different ways of handling bad data.

6. Accuracy classes defined for measurements.

Dr Sarma told that the a number of Accuracy classes are defined in ERCOT EMS system based on the measurement types such as Unit measurements, Load measurements, Branch Measurements, etc. Based on the accuracy, we can give weightage on various data for SE.

7. State Estimator performance monitoring tools.

ERCOT has developed a software tool named SE-STATS to check the various parameters of SE. He explained that it is good to have such tools. He suggested that if SE-STATS is not there as a part of EMS System, one can easily write a program to compute the residuals for every SE run. This can be used to chase discrepancies between SE value and SCADA value. Sometimes this is also useful to correct model errors.

8. State Estimator at SLDCs on NER.

Dr. NDR Sarma discussed the State Estimator running status at SLDcs of Assam and Meghalaya. Representative of Assam intimated that % telemetry (data/status) availability at SLDC, Kahilipara is very low mainly due to communication link related .No of RTUs are connected through PLCC link. So they are not utilizing SE/RTCA.

In Meghalaya telemetry condition is better but they are also not running SE.

Dr. Sarma requested all constituents to rectify all telemetry and start running Se/RTCA which is very much helpful tool for Grid operators.

9. Manpower requirement

All SLDCs /RLDC representatives opined that manpower shortage is the major hurdle in SLDCs/RLDC. It is very difficult to fill the gap due to which different activities including SCADA/EMS are getting affected.

10. Needs more hands on training

NERLDC/SLDC representative opined that some more in depth training is required for successful operation of SE/RTCA in SLDCs/RLDC. In this respect realtime EMS operation hands on is necessary apart from presentation. All requested Dr. Sarma to give more support and share expertise in solving SE/RTCA related issues. Dr. Sarma also agreed to visit all SLDCs to solve the EMS related problem in future.

<u>Gist of Discussion on 23-12-2014 at ERLDC - visit of Dr. NDR Sarma</u> <u>Regarding State Estimator functioning of ERLDC</u>

Mr.U.K. Verma (General Manager, ERLDC) welcomed Dr NDR Sarma and other members from ERLDC, WRLDC, NRLDC, NLDC, SRLDC, BSEB, DVC, GRIDCO and Alstom representatives located at ERLDC.

1. Importance and necessity of State Estimation

Dr NDR Sarma gave a brief presentation to demonstrate the various roles of State Estimator which would help the operator in real-time decision making. He also referred to the classic papers by Fred Schweppe (3 parts). He explained that NLDC have already uploaded these papers and some other papers written by ERCOT which can be referred to get a more practical idea of State Estimator related problems and tuning. Dr NDR Sarma told that Power System Analysis book by Stevenson & Grainger also contains a chapter well-written on SE.

2. Load Flow Vs State Estimation

Dr NDR Sarma explained the difference between Load Flow algorithms and State Estimator's Weighted Least Square Algorithm.

3. Role of SE in determining whether the system is (n-1) secure or not.

A list of contingencies is defined in the RTCA database which is evaluated on the base case taken from the output of SE in real-time. It gives a result whether any violation would occur if a contingency occurs. It will give operator warning and sufficient time to take remedial action. He told that Load Shedding is the last option used by the Grid Operators in ERCOT to maintain Grid Security. He explained about Remedial Action Schemes(RAS) and Remedial Action Plans (RAPs).

4. Un-observable network due to inadequate telemetry.

Dr NDR Sarma told that to maintain observability of the network Pseudo Measurements are used which could be either the last known good quality data of some data taken from the scheduled/modeled/archived values. He also emphasized that if sufficient redundant measurements are available in the system then the Solution would be better. Concept of observability was discussed. Issue of large amount of non-availability of data from RTUs was also discussed.

5. Rejection of bad-data from SE algorithm.

Dr NDR Sarma explained that the SE has the capability of detected bad data in the measurements. It compares the estimated value with SCADA data and the difference is treated as Residuals. It also uses Chi-square criterion which specifies if there is some bad-data in the measurement sets. If it indicates bad-data then the measurement with maximum Residual is dumped out or assigned less weight in the next iterations. He also mentioned that different vendors of State Estimation may have different ways of handling bad data.

6. Accuracy classes defined for measurements.

Dr Sarma told that the a number of Accuracy classes are defined in ERCOT EMS system based on the measurement types such as Unit measurements, Load measurements, Branch Measurements, etc.

7. State Estimator performance monitoring tools.

ERCOT has developed a software tool named SESTATS to check the various parameters of SE. He explained that it is good to have such tools. He suggested that if SESTATS is not there as a part of EMS System, one can easily write a program to compute the residuals for every SE run. This can be used to chase discrepancies between SE value and SCADA value. Sometimes this is also useful to correct model errors.

8. Frequency of Model update in ERCOT.

Dr NDR Sarma told that model update in ERCOT is done on weekly basis. All utilities need to tell in advance about commissioning of elements to the ERCOT ISO.

. State Estimator at ERLDC.

State Estimator running at ERLDC on truncated network of 765 kV to 220 kV. It is running on a regular basis and getting good solutions most of times. Dr. Sarma explained on how to chase invalid solutions and 'Solved with Excessive mismatch' situations. Dr. Sarma explained that at ERCOT they model 345 kV, 138 kV and 69 kV levels. Dr. Sarma explained that in ERCOT tie lines are modeled as DC tie lines. It will be modeled either as a generator or load based on the direction of power flow. Since there are interconnections with other RLDCs there is need to do external model of other RLDCs. Dr. Sarma informed that he will get additional information about external modeling done at other ISOs in US. While debugged, some model issues were identified (Example: Unit Max MW being less that the SCADA values). With some effort we could get good valid solutions with bus mismatch tolerance of 50 MW, 50 MVAR and voltage convergence of 0.01.

The following aspects were discussed:

1. Dr. Sarma mentioned about GT (EX:GMR GT mapping) mapping issues, GMR GT mapping was wrong in ERLDC system.

2. Dr Sarma asked to develop the Residues, List of measurements which are dropped in State estimation, List of anomalous measurements, List of measurements whose values are replaced, List of measurements and status which are manually marked and SLD Network connectivity with SCADA and Estimator data displays.

3. Dr Sarma suggested to model the inter-regional stations as load and generator with in the region instead of modeling the same in other region.

4. BSEB and DVC told that they will try to run the state estimator and RTCA.

5. GRIDCO told that at present they are migrating from ALSTOM system to Chemtrol system, with-in three months they are able to run estimator and RTCA.

6. Dr Sarma suggested ERLDC to visit all the SLDCs and provide hands on training to constituents towards successful operation of EMS system. Representatives of various constituents present in the workshop also requested to GM, ERLDC to extend help in this regard. GM, ERLDC accepted the same and assured full cooperation from ERLDC side.

Summary of Discussions on 4th and 5th January, 2015 at SRLDC - visit of Dr. NDR Sarma Regarding State Estimator functioning of SRLDC

Mr. Rakesh (Manager, SRLDC) welcomed Dr. NDR Sarma and other members from NLDC, SRLDC, ERLDC, WRLDC, APSLDC, KSEB, KPTCL & TNEB. The session started with presentation by Dr. NDR Sarma on various aspects of State Estimation. Following topics were discussed:

1. Importance and necessity of State Estimation

The various roles of State Estimator which would help the operator in real-time decision making were covered. Dr. Sarma also referred to the classic papers by Fred Schweppe (3 parts). He explained that NLDC have already uploaded these papers and some other papers written by ERCOT which can be referred to get a more practical idea of State Estimator related problems and tuning. Dr NDR Sarma told that Power System Analysis book by Stevenson & Grainger also contains a chapter well-written on SE.

2. Load Flow Vs State Estimation

Dr NDR Sarma explained the difference between Load Flow algorithms and State Estimator's Weighted Least Square Algorithm.

3. Role of SE in determining whether the system is (n-1) secure or not.

A list of contingencies is defined in the RTCA database which is evaluated on the base case taken from the output of SE in real-time. It gives a result whether any violation would occur if a contingency occurs. It will give operator warning and sufficient time to take remedial action. He told that Load Shedding is the last option used by the Grid Operators in ERCOT to maintain Grid Security. He explained about Remedial Action Schemes(RAS) and Remedial Action Plans (RAPs), Operational Plans. He explained that at ERCOT, contingency violations that show up before RAP actions are implemented are shown to the operators at ERCOT. There was discussion about usefulness of showing violations before RAS actions are implemented.

4. Un-observable network due to inadequate telemetry.

Dr NDR Sarma told that to maintain observability of the network Pseudo Measurements are used which could be either the last known good quality data of some data taken from the scheduled/modeled/archived values. He also emphasized that if sufficient redundant measurements are available in the system then the Solution would be better. Concept of observability was discussed. Issue of large amount of non-availability of data from RTUs was also discussed.

5. Rejection of bad-data from SE algorithm.

Dr NDR Sarma explained that the SE has the capability of detected bad data in the measurements. It compares the estimated value with SCADA data and the difference is treated as Residuals. It also uses Chi-square criterion which specifies if there is some bad-data in the measurement sets. If it indicates bad-data then the measurement with maximum Residual is dumped out or assigned less weight in the next iterations. He also mentioned that different vendors of State Estimation may have different ways of handling bad data.

6. Accuracy classes defined for measurements.

Dr Sarma told that the a number of Accuracy classes are defined in ERCOT EMS system based on the measurement types such as Unit measurements, Load measurements, Branch Measurements, etc.

7. State Estimator performance monitoring tools.

ERCOT has developed a software tool named SESTATS to check the various parameters of SE. He explained that it is good to have such tools. He suggested that if SESTATS is not there as a part of EMS System, one can easily write a program to compute the residuals for every SE run. This can be used to chase discrepancies between SE value and SCADA value. Sometimes this is also useful to correct model errors in State Estimation as well.

8. Frequency of Model update in ERCOT.

Dr NDR Sarma told that model update in ERCOT is done on weekly basis. All utilities need to tell in advance about commissioning of elements to the ERCOT ISO.

9. State Estimator at SRLDC.

SRLDC Engineers demonstrated the usage of State Estimator at SRLDC. They explained the reports that are being generated based on State Estimation results on a daily basis. Dr. Sarma appreciated these reports. He also suggested that large residuals needs to resolved for each State Estimation execution. A case of large residual was taken and was resolved by correcting the status of an isolator which was wrongly coming as open. A case where an analog telemetry was wrongly coming in SCADA was also discussed. Dr. Sarma suggested that it may be good to disable such wrong analog telemetry until it is corrected. A process for correcting wrong telemetry need to be established and strictly followed. This exercise was very useful and demonstrated the feasibility of running State Estimator on a regular basis.

10. Status of State Estimator at other constituents

Other constituents also discussed about the status of their EMS Systems. KSEB demonstrated the working of state estimation in their new SCADA system from ALSTOM. It was observed that state estimation was converging with excessive mismatch warnings. Dr. Sarma guided for the proper tuning of configuration and tolerance parameters. He also suggested to check with the vendor for updating state estimation displays with links to RTNET and SCADA displays.

Telangana representatives expressed their views on usefulness of running state estimator at control centres. They informed that post bifurcation of Andhra Pradesh, the network model is still to be updated by ALSTOM.

Representatives from TNEB informed that the EMS package in existing GE scada is not being used by them. They further informed that they are in the process of migrating to ALSTOM scada system and will ensure running of state estimation in the new system.

KPTCL representatives demonstrated their ABB Network Manager EMS package. They informed that the EMS network has been modeled for 220 KV and higher voltage buses. Dr. Sarma appreciated the efforts and suggested for further tuning of parameters.

11. Clarification session

Dr. NDR Sarma provided clarifications on doubts raised by SRLDC representatives on SE modeling techniques. On doubts on usage of ZBR in EMS modeling, he confirmed that he will

revert back on the usage of ZBR in ERCOT network model. On questions on modeling for FSC lines, Pump mode operation & condenser mode operation of generators he informed that he will revert back with further insights of modeling these devices in ALSTOM network.

The workshop ended with a vote of Thanks from ED, SRLDC.

Summary of Discussions on 7th January, 2015 at WRLDC - visit of Dr. N. D. R. Sarma Regarding State Estimator functioning of WRLDC

Sh.P. Mukhopadhyay (General Manager, WRLDC) formally welcomed Dr. N. D. R. Sarma from ERCOT, Texas and members from NLDC, ERLDC and SRLDC for training cum discussion session on State Estimation in Power Systems. Executives from all departments of WRLDC were present for this discussion.

1. Importance and necessity of State Estimation

Following the introduction of the participants, the session started with a brief presentation by Dr. N. D. R. Sarma explaining the need and necessity of State Estimator which can be used by the operator in real-time decision making. He explained state estimation forms the basis for other advanced applications like contingency analysis which operators may use to see the effects of a contingency on the system in real time. He also explained how it helps in correcting telemetry inaccuracies. However, he insisted on ensuring the correction of inaccurate telemetry and integration of non-available telemetry since it is essential for running state estimation itself. He referred to three classic papers by Fred Schweppe have already been shared with members of POSOCO. He also suggested some papers written by ERCOT executives which can be referred to get a more practical idea of State Estimation related problems and its solutions. He also suggested a book authored by Grainger and Stevenson on Power System Analysis which has a complete chapter on State Estimation.

2. Load Flow Vs State Estimation

Dr. N. D. R. Sarma explained the difference between Load Flow and State Estimation program. Since State Estimation has more number of known variables than the number of equations, the algorithm has multiple checks for validity of data and hence gives an acceptable solution. He discussed the algorithm of Weighted Least Squares in detail.

3. Relation between N-1 criteria and SPS

Dr. N. D. R. Sarma explained that N-1 criteria is system specific and SPS is component specific. N-1 security criteria is to be maintained all the time, however if certain component gets overloaded due to ambient conditions SPS must save the system. SPS is not related to the state of the system.

4. Role of SE in determining whether the system is (n-1) secure or not.

SE solution gives the snapshot of the system which is further used for contingency analysis. A list of contingencies can defined in the RTCA database which is evaluated on the base case taken from the output of SE in real-time. Generally N-1 contingency is considered. In ERCOT the multiple outage contingencies like outage of Double circuit tower is also considered as N-1 contingency however it is categorized as a double contingency. Contingency analysis gives whether any violation would occur if the system goes in N-1 state suddenly. It will enable the operator to take preventive actions to bring the system in secure state if at all the contingency occurs. He told that Load Shedding should be used as the last option as people are dependent on it. He explained about Remedial Action Schemes (RAS/SPS), Remedial Action Plans (RAPs) and Operational Plans (OpPlans) done in ERCOT. He explained that RAS/SPS and RAP are done on yearly basis where as OpPlans are done as and when required on a temporary basis. These plans

are drawn out from study environment of state estimation. He also mentioned about a software called D-RAP which would draw plans for securing the system during contingencies in real time.

5. States of Power System.

Dr. N. D. R. Sarma explained that an operator must know the state of the power system. Sometimes it may be required to operate the system in a less economical but more secure state. The Correctively Secure state is more economical than a secure state. State estimation would provide the operator an idea about the state of the system. He also explained the importance of the reserves in the system and sometimes load shedding may be required for maintaining the reserves in the system for a large credible contingency.

6. Un-observable network due to inadequate telemetry.

Dr. N. D. R. Sarma told that to maintain observability of the network state estimation uses Pseudo Measurements which could be either the last known good quality data or some data taken from the scheduled/modeled/archived values. He explained a simple spanning tree technique to determine the observability of the system. He also emphasized that if sufficient redundant measurements are available in the system then the Solution would be better. Issue of large amount of non-availability of data from RTUs or ICCP was also discussed.

7. Rejection of bad-data from SE algorithm.

Dr. N. D. R. Sarma explained that the SE has the capability of detecting bad data in the measurements based on the residue value. It compares the estimated value with SCADA data and the difference is treated as Residual. It also uses Chi-square criterion which specifies if there is some bad-data present in the measurement set. If Chi-square test indicates presence of bad data then the measurement with maximum Residual is dumped out or assigned less weight in the next iterations. He also mentioned that different vendors of State Estimation may have different ways of handling the bad data. Residuals can also sometimes point out the parameter or structural errors in modelling the system. He mentioned categories may be formed for assigning the weights like high weighting for Generator data than the line flows, etc.

8. Accuracy classes defined for measurements.

Dr. Sarma told that a number of Accuracy classes are defined in ERCOT EMS system based on the measurement types such as Unit measurements, Load measurements, Branch Measurements, etc.

9. State Estimator performance monitoring tools.

ERCOT has developed a software tool named SESTATS to check the various parameters of SE. He explained that using this tool quality of state estimation results can be assessed and can be easily chased. Further tools of such type may be made internally even if SESTATS is not available. This can be used to chase discrepancies between SE value and SCADA value. Sometimes this is also useful to correct model errors in State Estimation as well.

10. List of displays

Dr. Sarma explained the important displays to be seen while chasing the discrepancies in state estimation. The main display of iteration summary would give the bus with maximum mismatch. This can be a good starting point for chasing the problem. Further the violation can be in bus mismatch or residue or cost. Displays like dead equipment with significant data values are

required to correct the status of the element. List of residues is also an important display for correcting the telemetry. He explained that sometimes the SCADA value may be correct and there may be an issue with SE model (parameter error). Dr. Sarma, explained how to navigate displays on the WRLDC's new Alstom EMS system. Since the system is still in the process of building we could not get valid SE solution in the new Alstom's EMS system.

11. Frequency of Model update in ERCOT.

Dr. N. D. R. Sarma told that model update in ERCOT is done on weekly basis. All utilities need to tell in advance about commissioning of elements to the ERCOT ISO.

Summary of Discussions on 8th January, 2015 at WRLDC - visit of Dr. N. D. R. Sarma <u>Regarding State Estimator functioning of WRLDC</u> <u>(Participation of SLDCs)</u>

Sh. P. Mukhopadhyay (General Manager, WRLDC) formally welcomed Dr. N. D. R. Sarma, Chief Engineer & officers from Gujarat SLDC, Chief Engineer & officers from Madhya Pradesh SLDC and officers from Chhattisgarh SLDC for familiarization cum discussion session on State Estimation in Power Systems. Also Officers from MP SLDC and Chhattisgarh SLDC joined over video conference. Officers from WRLDC, SRLDC, NLDC and ERLDC were also present for this discussion. The session commenced at 10:30 AM.

1. CE SLDC Gujarat mentioned that the new SCADA system was under development and the database models were thoroughly checked during FAT. In the current system of SCADA, the State estimation converges and is used regularly. He also suggested that guidance from Dr. N. D. R. Sarma will be taken from time to time regarding state estimation. He further stated that the time was apt for training of state estimation as the new SCADA system is in process.

2. CE SLDC MP stated that PNA is currently not used on daily basis however young engineers have been identified for running the EMS functionalities in the new SCADA system. Further he also said that the transmission network of MP is strong with less constraints but still state estimation will be used for further strengthening the grid.

3. GM, WRLDC suggested that an internal session may be held for SLDCs who could not participate during this discussion.

4. Presentation by Dr. N. D. R. Sarma on state estimation -

a) Importance and necessity of State Estimation

Following the introduction of the participants, the session started with a brief presentation by Dr. N. D. R. Sarma explaining the need and necessity of State Estimator which can be used by the operator in real-time decision making. . He suggested three classic papers by Fred Schweppe which will be shared on the state estimator group. He also suggested a book authored by Grainger and Stevenson on Power System Analysis which has a complete chapter on State Estimation. He mentioned state estimation should be used to detect and avoid overloading on the lines.

b) Limits used in state estimation

Dr. N. D. R. Sarma explained the limits put on the analog values as normal, emergency and load shedding limits. The limits were based on thermal rating was confirmed after a question was raised. Further he also stated that in ERCOT, dynamic ratings is also imposed to maximize the use of the line. Further there are other limits such as stability limits which are also calculated using other applications. An operator must take the lowest of the different types of limits to keep the system safe and secure.

c) N-1 condition simulations

Dr. N. D. R. Sarma mentioned that the state estimation forms the basis for contingency analysis. Contingency analysis takes the solution of state estimation and simulate all the contingencies and show the top credible contingencies. He also mentioned that in ERCOT, outage of multiple elements like outage of Double circuit tower is also considered as N-1 contingency and categorized as Double contingency. An operator must look for limit violations in contingency analysis.

d) Man power requirement

Dr. N. D. R. Sarma also discussed the structure of man power in ERCOT. A dedicated person is available and responsible for maintaining the state estimation valid.

e) SPS/RAS and RAP schemes

Dr. N. D. R. Sarma explained about Remedial Action Schemes (RAS/SPS), Remedial Action Plans (RAPs) and Operational Plans (OpPlans) done in ERCOT. He explained that RAS/SPS and RAP are done on yearly basis whereas OpPlans are done as and when required on a temporary basis. These plans are drawn out from study environment of state estimation.

f) States of Power system

Dr. N. D. R. Sarma explained that an operator must know the state of the power system. Sometimes it may be required to operate the system in a less economical but more secure state. The Correctively Secure state is more economical than a secure state. State estimation would provide the operator an idea about the state of the system. He also explained the importance of the reserves in the system and sometimes load shedding may be required for maintaining the reserves in the system for a large credible contingency. He further stated that ERCOT has the full authority to bring the reserve units online.

g) Observability of the system

Dr. N. D. R. Sarma explained a simple technique used for checking the observability of the system. A spanning tree may be formed connecting the two nodes having at least one telemetry on either side and if all the nodes get connected the system can be considered as observable. He also emphasized that if the spread of telemetry is proper then even the states of stations with no RTU can be estimated.

h) Gross and Net measurement in generators

It was discussed that when gross and net measurement is available, a simple load is to be modeled as auxiliary loads on the generator bus to take care of the state estimation contingency.

i) Archiving philosophy

Dr. N. D. R. Sarma explained that in ERCOT the model of state estimation case is saved regularly and pulled back in the system as and when required. The save cases are preserved and there is a fixed periodicity of saving SE models and data. He also explained that at ERCOT all the SCADA data is also archived using OSI's PI system. It is required to archive last 7 years data at ERCOT. He also explained that all the models are updated in EMS system every week. All the old models are also archived in the form of save cases.

5. Demonstration of State estimation at WRLDC

On the current GE SCADA system, a demonstration on running the state estimation was performed on WRLDC network. WRLDC network is modeled upto 400kV level. It was demonstrated that by manually correcting the wrong status information from field, the

convergence of State estimation can be further improved. Further the mismatches on voltages and angles were also checked in iteration summary. Due to modeling differences the mismatches on the lines were observed in bad measurement summary. The importance of voltage and angle tolerances was explained by Dr. N. D. R. Sarma.

6. Status of state estimation at SLDCs

a) Chhattisgarh SLDC

The state estimation database model consists of 400kV, 220 kV and some important 132 kV stations. However Dr. N. D. R. Sarma suggested that if the network below a certain voltage level is radial, the lower network can be simply modelled as loads. With the current system the state estimation does not converge regularly. However the aspects of state estimation are well understood and will be taken care of during the SAT of the new SCADA EMS system.

b) Madhya Pradesh SLDC

The state estimation model database consists of 400kV and 220kV network. They will go upto 132kV network once data from all 132kV network is available. The state estimation is not run regularly, however young engineers are identified for making the state estimation work in the new SCADA system.

c) Gujarat SLDC

The state estimation model consists of 400kV, 220kV and 132kV network. The state estimation is run on regular basis. The advantage with Gujarat is the engineers from SLDC Gujarat themselves fix the problems in telemetry. So the RTU observability and hence the telemetry is quite strong.

The session was concluded with Dr. N. D. R. Sarma mentioning that the consistent representation of the system is to be maintained to keep the system secure.

Wrapping –up discussions of the state estimation awareness exercise Date: 08/01/2014

- A wrap up session on the state estimation exercise mentioned below, was held on a video conference between WRLDC and NLDC on 8th Jan 2015 A/N. Officers from NLDC, ERLDC, SRLDC, and WRLDC were present at WRLDC, CEO, ED & other officers from NLDC were present on Video conference.
 - NRLDC/NLDC, Delhi : 13-14 Dec 2014
 - ➢ NERLDC, Shillong : 21-22 Dec 2014
 - ERLDC, Kolkata : 23-24 Dec 2014
 - SRLDC, Bengaluru : 4-5 Jan 2015
 - WRLDC, Mumbai : 7-8 Jan 2015
- 2. A draft table of content for state estimation in India, experience, issues and action plans was discussed by Dr. N. D. R. Sarma. He narrated his experience and thoughts on state estimation in each region and was confident of having built an effective state estimation team through this endeavor.
- 3. Following the discussion on contents of the report by Dr. Sarma, CEO (POSOCO) was highly impressed on the work of Dr. Sarma and shared his thoughts and vision for taking the state estimation level to a higher level. He suggested that the report be made public so that it can be viewed as a reference material by the practicing engineers and academia. The report may also be used as a feedback to regulatory commission.
- 4. He also suggested that a draft report is to be prepared by 22nd Jan. 2015 and may be included as an agenda item during the FOLD meeting.
- 5. It was also discussed that since there are no standards for state estimation, regular discussions need to be held to streamline and innovate the state estimation process.
- 6. CEO, POSOCO also suggested that a group of practicing engineers be formed consisting of engineers dealing with state estimation so that a platform for discussion is available.
- 7. CEO also suggested that at National Power Systems Conferences, presentations and panel sessions regarding experiences of State Estimation should be organized. He also suggested that POSOCO can organize a world conference on State Estimation inviting world leaders which will provide opportunity for young engineers to meet with ICONs and gurus of State Estimation across the world. He suggested that it can be organized under CIGRE or IEEE. Dr. Sarma appreciated this idea and suggested that it can be planned to have it in 1-2 years.

- 8. Since state estimation is of utmost importance for maintaining the system secure, the students in engineering must be taught about state estimation in detail. Considering this a change in course material may be suggested in the educational institutes. He also suggested that POSOSCO can allocate some R&D fund so that Academia can work on some practical problems related to State Estimation. Practical data can also be provided for the research work. Some Power System POSOCO awards can also be given.
- 9. Further he also suggested that the SLDCs must be actively involved in this process and RLDCs may coordinate with them to run the state estimation.
- 10. Opinions from members who visited other RLDCs was taken and the issues of telemetry strengthening and model updating were discussed.
- 11. Executive Director suggested that we can explore the possibility of having MOU between ERCOT and POSOCO so that engineers and visit ERCOT and understand the usage of EMS systems.
- 12. Mr. Narasimhan suggested that RLDCs could have weekly sessions on usage of State Estimation.
- 13. The discussion ended with a vote of thanks from General Manager WRLDC on behalf of POSOCO and SLDCs to Dr. N. D. R. Sarma. Standing ovation was given to Dr. Sarma for his efforts in improving the usage of State Estimation in India.

Appendix 2

List of participants

Visit at NLDC on 14th December 2014

S. No.	Name of Participant	Designation	Organization	Email ID
1	Shri S.K.Soonee	CEO	POSOCO	sksoonee@gmail.com
2	Shri KVS Baba	GM	NLDC	kvsbaba@gmail.com
3	Shri P.K.Agarwal	Addl. GM	NLDC	pkagarwal@gmail.com
4	Shri S.R. Narasimhan	Addl. GM	NLDC	srnarasimhan@gmail.com
5	Shri Debasis De	DGM	NRLDC	de.debasis@gmail.com
6	Shri N Nallarasan	DGM	NLDC	nalla201148@gmail.com
7	Shri M Viswanadh	Manager	ERLDC	mviswanadh2001@yahoo.com
8	Shri Abhishek Kumar Gupta	Dy. Manager	WRLDC	abhishek_all@yahoo.com
9	Shri Akhil Singhal	Sr. Engineer	NLDC	akhilsinghal77@gmail.com
10	Shri Sunil Kumar Patil	Engineer	WRLDC	skpatil.posoco@gmail.com
11	Shri Sanyasi Naidu J	Engineer	SRLDC	sannajaji246@gmail.com
12	Shri Sunny Kumar Chaudhary	Engineer	NLDC	kumar.sunny246@gmail.com
13	Shri Riza Naqvi	Engineer	NLDC	riza.naqvi@gmail.com
14	Shri Akshay Sarin	Engineer	NLDC	81sarin@gmail.com
15	Shri Phani Shankar Chilukuri	Engineer	NLDC	cpsankar07@gmail.com
16	Shri Phani Bala Krishna	Engineer	NLDC	phanibalakrishna@gmail.com
17	Shri L.N. Baranwal	Engineer	NLDC	laxminarayanbaranwal@gmail.com
18	Shri Pradeep Reddy	Engineer	NLDC	pradeepreddy.iitd@gmail.com
19	Shri Sachin Rawat	E.E.	SLDC- Dehradun, PTCUL	sachinrawat1978@gmail.com
20	Shri Ankit Kumar	A.E.	SLDC- Dehradun, PTCUL	ankit.kamboj90@gmail.com

Visit at NRLDC on 15th December 2014

S.				
No.	Name of Participant	Designation	Organization	Email ID
1	Shri S.K.Soonee	CEO	POSOCO	sksoonee@gmail.com

S. No.	Name of Participant	Designation	Organization	Email ID
2	Shri KVS Baba	GM	NLDC	kvsbaba@gmail.com
3	Shri P.K.Agarwal	Addl. GM	NLDC	pkagarwal@gmail.com
4	Shri Debasis De	DGM	NRLDC	de.debasis@gmail.com
5	Shri N Nallarasan	DGM	NLDC	nalla201148@gmail.com
6	Shri M Viswanadh	Manager	ERLDC	mviswanadh2001@yahoo.com
7	Shri Abhishek Kumar Gupta	Dy. Manager	WRLDC	abhishek_all@yahoo.com
8	Shri Akhil Singhal	Sr. Engineer	NLDC	akhilsinghal77@gmail.com
9	Shri Pradeep Reddy	Engineer	NLDC	pradeepreddy.iitd@gmail.com
10	Shri Sunil Kumar Patil	Engineer	WRLDC	skpatil.posoco@gmail.com
11	Shri Sanyasi Naidu J	Engineer	SRLDC	sannajaji246@gmail.com
12	Shri Sunny Kumar Chaudhary	Engineer	NLDC	kumar.sunny246@gmail.com
13	Shri Riza Naqvi	Engineer	NLDC	riza.naqvi@gmail.com
14	Shri Akshay Sarin	Engineer	NLDC	81sarin@gmail.com
15	Shri Phani Bala Krishna	Engineer	NLDC	phanibalakrishna@gmail.com
16	Shri Sachin Rawat	E.E.	SLDC- Dehradun, PTCUL	sachinrawat1978@gmail.com, sachin_rawat@ptcul.org
17	Shri Ankit Kumar	A.E.	SLDC- Dehradun, PTCUL	ankit.kamboj90@gmail.com
18	Ankit Bedi	A.E.	PSTCL	srxensldc2@pstcl.org
19	Avdhesh Jha	J.E.	NRLDC	akjnldc@gmail.com
20	Ved Manu	Executive	Siemens	ved.manu@siemens.com
21	Gitanjali Sharma	Dy. Manager	NRLDC	gitanjali.nrldc@gmail.com
22	Aman Bansal	Engineer	NRLDC	amanb1503@gmail.com
23	Neelanjana Jain	Sr. Engineer	NRLDC	jain.anni@gmail.com
24	Himanshi	Executive Engineer	NRLDC	himanshisagar1093@gmail.com
25	S.P.Singh	Dy. Manager	NRLDC	talkosurendra@rediffmail.com
26	Divya Kushwaha	Engineer	NLDC	kushwahadivya13@gmail.com
27	Rakesh Sharma	AEN	RRVPNL	rakesh_jpr@hotmail.com
28	Sanjeev K. Rawat	AEE	SLDC-Shimla	sandy_rawat@yahoo.co.in
29	K.R.Sharma	AAE	HPSEBL	krsharma_sldc@yahoo.co.in
30	Mohd. Irfan Alam	EE	ULDC- Lucknow, UPPTCL	uldclko@gmail.com

S.				
No.	Name of Participant	Designation	Organization	Email ID
			ULDC-	
			Lucknow,	
31	A.K.Verma	AE	UPPTCL	akverma.kl@gmail.com
32	Anuj Kumar Gahlaut	Manager	SLDC-Delhi	ak.gahlaut@dtl.gov.in
33	S.K.Shrivastava	A.M.(T)	SLDC-Delhi	shrivastava.dtl@gmail.com
34	Saif Rehman	Engineer	NLDC	rehman-saif@outlook.com
	Brijendra Bahadur			
35	Singh	Sr. Engineer	NLDC	brijendra.powergrid@gmail.com
36	Anamika Sharma	Dy. Manager	NLDC	anasharma2002@gmail.com
37	Vikas	AAE	HVPNL	xen.hvpn@gmail.com
			SLDC-	
38	Sandeep Khari	AE	Haryana	crsosldc@gmail.com
			SCADA,	
39	Gaurav Sharma	SDO	HVPNL	ae.scadahvpnl@gmail.com
40	Naveen gupta	Dy. Director	BBMB	nkg.chd@gmail.com
41	Ehtisham Andrabi	AEE	J&K PDD	eandrabi@yahoo.com
42	H.K.Chawla	DGM	NRLDC	hk.chawla12@gmail.com
43	R.K.Sharma	DGM	NRLDC	rks_4000@rediffmail.com
44	Devendra Kumar	DGM	NRLDC	d.kumar@pososo.in
45	A. Mani	GM	NLDC	amanipg@gmail.com
46	S.C.Srivastava	Professor	IIT-Kanpur	scs@iitk.ac.in

Visit at NERLDC on 21-22nd December 2014

S.	Name of			
No.	Participant	Designation	Organization	Email ID
1	V Kaikhochin	DGM	NERLDC	kaikhochin@gmail.com
2	Aditya P Das	Dy. Manager	WRLDC	aditya19227@gmail.com
3	Sunil K Patil	Engineer	WRLDC	skpatil.posoco@gmail.com
4	Puneet Kumar Maurya	Engineer	NLDC	puneetkkaurya@gmail.com
5	N.R. Paul	DGM	NERLDC	nrpaul123@gmail.com
6	M. Viswanadh	Manager	ERLDC	mviswanadh_2001@yahoo.com
7	S.C. De	Chief Manager	NERLDC	scde55008@rediffmail.com
8	T.S. Singh	GM	NERLDC	
9	M.K. Bordoloi	CGM	SLDC, AEGCL	manbon76@yahoo.co.in
10	J.K. Baishya	AGM	SLDC, Assam	
11	Amresh Malik	DGM	NERLDC	amarish 1969@yahoo.co.in

S.	Name of			
No.	Participant	Designation	Organization	Email ID
	Dilyngdob	FF	SLDC,	
12	DJ LYNguon	CC	Meghalaya	davidjeremy123@yahoo.co.in
	D. Khamkammi		SLDC,	
13	B. KIIdIIIKdIIIIII	AE	Meghalaya	bampymtbitbmy.khamkammi@gmail.com
14	Mintu Mandal	Sr. Engineer	POSOCO	minty66@gmail.com
15	H.R.F. Hadem	AE	MeECL	hadimi1985@gmail.com
16	Chandan Kumar	Engineer	WRLDC	chandan.wrldc@posoco.in
	Alakash Kash		SLDC,	
17	Alakesh Koch	AE	MePTCL	alakeshkoch@gmail.com
18	N. Altaf	Sr. Engineer	NERLDC	nadeemaltaf09@gmail.com
	S. Konar	Chief	NERLDC	
19		Manager		konar_s@gmail.com
20	M. Dey	Engineer	NERLDC	mdey1403@gmail.com
21	Ankit Jain	Engineer	NERLDC	rawakaankit13@gmail.com
22	Anupam Kumar	Sr. Engineer	NERLDC	anupamnerldc@gmail.com
23	Prajat Barkatki	Sr. Engineer	NERLDC	prarjatbarkatki@gmail.com
24	Binay Shankar Rai	Asst. GM	NERLDC	
25	Vikram Das	Engineer	NERLDC	
	Prashant Kumar			
26	Das	Sr. Engineer	NERLDC	

Visit at ERLDC on 23-24th December 2014

S.				
No.	Name of Participant	Designation	Organization	Email ID
1	U.K.Verma	GM	ERLDC	ujwalkumar.verma@gmail.com
	S P Barnwal	Chief		
2	5.1 .Barriwar	Manager	ENEDC	spbarnwal@gmail.com
3	M.Viswanadh	Manager	ERLDC	mviswanadh_2001@yahoo.com
4	G. Mukherjee	Engineer	ERLDC	gourav.2319@gmail.com
5	S.K.Sahu	Manager	ERLDC	sksahu96@gmail.com
6	A.B.Sengupta	Engineer	ERLDC	anwayasen@yahoo.co.in
7	M.Das	Sr. Engineer	ERLDC	manasdas123@gmail.com
8	B. Mondal	Engineer	ERLDC	biswajitmondal91@gmail.com
9	R.P.Kundu	Engineer	ERLDC	rajpratim@gmail.com
10	Saurav K Sahay	Sr. Engineer	ERLDC	sahay.saurav@gmail.com
11	Aditya P Das	Dy. Manager	WRLDC	aditya19227@gmail.com
12	S Banerjee	Asst. GM	ERLDC	surojitb@gmail.com
13	G Chakraborty	DGM	ERLDC	c.goutam62@gmail.com
14	Sunil K Patil	Engineer	WRLDC	skpatil.posoco@gmail.com

S.				
No.	Name of Participant	Designation	Organization	Email ID
15	Aman Bansal	Engineer	NRLDC	amanb1503@gmail.com
16	Puneet Kumar Maurya	Engineer	NLDC	puneetkmaurya@gmail.com
17	Santosh Kumar Panda	AE	DVC	santosh90panda@gmail.com
18	Shambhu Das	EE	DVC	shambhu_das@dvcindia.org
19	Madhuparna Halder	AE	DVC	madhuparna92@gmail.com
20	Meheli Samanta	AE	DVC	meheli.samanta@gmail.com
21	T Sudhir		SRLDC	tsudhir109@gmail.com
22	Sanjeev Chandrakar		ERLDC	sanjeev.chandrakar@gmail.com
23	P.L.Gouda		OPTCL	plg.scada@gmail.com
24	S.K. Pattanyak		OPTCL	ee.skpattanayak@optcl.co.in
25	S.K. Sethi		OPTCL	sukanta.sethi@gmail.com
26	B. Panda		OPTCL	bibhu989@gmail.com
27	P.K. Beura		OPTCL	prasant_beura@rediff.com
28	Pushkar		OPTCL	pushkarece@gmail.com
29	Roshan Jaiswal		ERLDC	roshan.009.rj@gmail.com
30	Chandan Kumar		WRLDC	chandan.wrldc@posoco.in
31	M.K.Thakur	Dy. Manager	ERLDC	mkt_elect@yahoo.co.in

Visit at SRLDC on 04-05th January 2015

S.				
No.	Name of Participant	Designation	Organization	Email ID
1	S.P. Kumar	DGM	SRLDC	spkumar@srldc.org
2	Rakesh	Manager	SRLDC	rakesh@srldc.org
3	Pramod Singh	Dy. Manager	SRLDC	pramod.s.singh@gmail.com
4	J. Ramakantha	EEE	KPTCL	ceeldcsysopr@gmail.com
5	Sudeep M		SRLDC	sudeep26.4u@gmail.com
6	A Janardhan	Engineer	SRLDC	janardhanreddy91@gmail.com
7	K.B.V Ramkumar	Engineer	SRLDC	ramkumar@srldc.org
8	B.S. Sruthi	Engineer	SRLDC	shruthibs@srldc.org
9	T. Kalanithy	Asst. GM	SRLDC	tkalanithy@gmail.com
10	S Layka	AE	TANTRANSCO	laykab@gmail.com
11	P. Dayanidhi	AEE	SLDC, Tamil Nadu	dayatneb1970@gmail.com
12	Vijitha K	Engineer	SRLDC	vijitha@srldc.org
13	V. Balaji	DGM	SRLDC	vbalaji@srldc.org
14	Venkateshan M	Dy. Manager	SRLDC	venkbe@gmail.com
15	Madhukar G	Dy. Manager	SRLDC	madhu@srldc.org
16	Manoj M.R.	AEE	SLDC, Kerala	manojmr@gmail.com

S.	Nome of Douticinent	Designation	Orregiantian	[meil ID
NO.	Name of Participant	Designation	Organization	
	P.R. Raghuram	Executive	SRLDC	
17	5	Director		prraghu@srldc.org
18	T. Sudhir	Engineer	SRLDC	tsudhir109@gmail.com
19	Sanyasi Naidu J	Engineer	SRLDC	sannajaji246@gmail.com
20	Saurav K Sahay	Sr. Engineer	ERLDC	sahay.saurav@gmail.com
21	Srinivas Chitturi	Engineer	WRLDC	srinivas.chitturi@hotmail.com
22	Muthukumar T	Dy. Manager	SRLDC	muthu@srldc.org
23	Sumana V Bhat	AEE	KPTCL	bhat_sumana@rediffmail.com
24	G Neelima	AEE	KPTCL	aee.drmcc@gmail.com
25	Ajay K Mathew	Engineer	SRLDC	ajaykm4588@gmail.com
26	L. Sharath chand	Engineer	SRLDC	sharathchand@srldc.org
27	Yekambaram Kasami	Engineer	SRLDC	yekambaram.kasani@gmail.com
28	Naga Suresh Movva	Sr. Engineer	SRLDC	mnsuresh.nitu@gmail.com
29	Arthi Sahaya Rones V	Engineer	SRLDC	arthi@srldc.org
30	T. Sathya Narayana	ADE	TSSLDC	adeuld1_kaurco@telengana.gov.in
31	D. Vasudeva Rao	DE	TSSLDC	de_scada_transco@telengana.gov.in
32	Chandra Shekharan	EE	KPTCL	
33	Akhil Singhal	Sr. Engineer	NLDC	akhilsinghal77@gmail.com
34	Rajkumar A	Sr. Engineer	WRLDC	rajkumar@posoco.in
35	Amritha Sasi	AE	SLDC, Kerala	amrithashreekumar@gmail.com
36	Sadashiva N	AEE	SLDC, KPTCL	sadashivgowda@gmail.com
37	Prince M. P.	ET	SRLDC	princepoulosemp@gmail.com
38	Madhu B. P.	AEE	KPTCL	madhu_bp@hotmail.com

Visit at WRLDC on 07-08th January 2015

S.				
No.	Name of Participant	Designation	Organization	Email ID
1	Ch. Jagadeesh	Engineer	WRLDC	jagadeesh537@gmail.com
2	Sidhartha Mohapatra	Engineer	WRLDC	mohapatra.sidhartha73@gmail.com
3	Absav Ahmad	Engineer	WRLDC	absaransari 82@yahoo.in
4	Pradeep Kumar	Engineer	WRLDC	psanodiya@gmail.com
5	Sunil Aharwal	Manager	WRLDC	aharwal@gmail.com
6	M. Viswanadh	Manager	ERLDC	mviswanadh_2001@yahoo.com
7	Chandan Kumar	Engineer	WRLDC	chandan.wrldc@posoco.in
8	Vivek Pandey	Chief Manager	WRLDC	vivek.pandey@posoco.in
9	Aditya Prasad Das	Dy. Manager	WRLDC	aditya19227@gmail.com
10	L. Sharath Chand	Engineer	SRLDC	sharathchand@srldc.org
11	Amit Prasad Gupta	Sr. Engineer	WRLDC	apgupta@posoco.in
12	Vinay Shrivastava	Addl. GM	WRLDC	vks@powergridindia.com

S. No.	Name of Participant	Designation	Organization	Email ID
13	Abhimanyu Gartia	DGM	WRLDC	agartia@gmail.com
14	P. Mukhopadhyay	GM	WRLDC	prithwish.mukhopadhyay@posoco.in
15	Pushpa Seshadri	Chief Manager	WRLDC	pushpa seshadri@hotmail.com
16	Sachala Mishra	Asst. GM	WRLDC	mishrasachala@gmail.com
17	Sumegha Katiyar	Sr. Engineer	WRLDC	sumegha.katiyar@gmail.com
18	Jyoti Shukla	Engineer	WRLDC	jyotisharma.22@rediffmail.com
19	Roselind V	Chief Manager	WRLDC	roselind v@yahoo.com
20	Haresh Patel	Chief Manager	WRLDC	haresh patel2k@yahoo.co.in
21	S. Usha	Chief Manager	WRLDC	usha s gopi@yahoo.com
22	Ankur Gulati	Sr. Engineer	WRLDC	ankur.pwrgrd@gmail.com
23	Pravin Sute	Dy. Manager	WRLDC	pravinsute@gmail.com
24	Akhil Singhal	Sr. Engineer	NLDC	akhilsinghal77@gmail.com
25	Rajkumar A	Sr. Engineer	WRLDC	rajkumar@posoco.in
26	Vivek Singh	Sr. Asst. Engineer	WRLDC	viveksingh1181@gmail.com
27	Sunil Patil	Engineer	WRLDC	skpatil.posoco@gmail.com
28	P.K. Agarwal	Addl. GM	NLDC	pkagarwal@posoco.in
29	Saniav Chowdharv	EE	SLDC-Raipur	shubhamchowdhary@rediffmail.com
			SLDC-	
30	P.B. Suthar	DE	Gujarat	pankajsuthar2006@gmail.com
			SLDC-	
31	N.A. Makwana	DE	Gujarat	namsldc.getco@gebmail.com
27	NH Coswami	CC	SLDC-	nhaclds gotso@gobmoil.com
52				
33	B.B. Mehta	CE	Gujarat	bbm@gebmail.com
34	Shri W.R. Wankhede	CE LD	SLDC-Raipur	
35	Shri H.K. Deota	SE LD.	SLDC-Raipur	
36	Shri Y.K. Rao	EE LD	SLDC-Raipur	jkris2209@gmail.com
37	Shri S.K. Chohan	EE LD	SLDC-Raipur	
38	Shri G.P. Singh	AE LD	SLDC-Raipur	singhgp67@gmail.com
39	Shri S. Surya Prakash	AE LD.	SLDC-Raipur	prakashsps@hotmail.com
40	Ms Pratibha Khunte	AE LD	SLDC-Raipur	
41	Shri P.A.R. Bende	CE	SLDC-MP	parbende@gmail.com
42	Shri K.K. Parbhakar	SE	SLDC-MP	kkparbhakar@gmail.com
43	Shri S.S. Patel	SE	SLDC-MP	sspatel_2261@gmail.com
44	Shri J. Agasty	EE	SLDC-MP	jwagasty@gmail.com
45	Shri R.K. Gupta	EE	SLDC-MP	rajeshgupta@yahoo.co.in
46	Shri Vivek Sgarwal	EE	SLDC-MP	vivek.jbp@rediffmail.com
47	Shri Mohan Sahu	EE	SLDC-MP	

S.				
No.	Name of Participant	Designation	Organization	Email ID
48	Shri Anurag Misra	EE	SLDC-MP	anuragmisra22@gmail.com
49	Shri R.P. Rakhya	AE	SLDC-MP	rprakhya26@gmail.com
50	Shri M.L. Sahu	EE	SLDC-MP	mohanssahu@yahoo.com
51	Shri S.K. Shivhare	AE	SLDC-MP	sunilshivhare@gmail.com
52	Shri D.S. Mujulde	AE	SLDC-MP	doulat_munjalde@yaho.co.in
	Smr. Anima			
53	Upadhyay	AE	SLDC-MP	animaupadhyay12@gmail.com
54	Shri Rajeev Kumar	AE	SLDC-MP	om_rajeev91@rediffmail.com
55	Shri Divya Soni	AE	SLDC-MP	divya17m@gmail.com
56	Shri Cinderella Felix	AE	SLDC-MP	cinderella.felix@gmail.com
57	Smt. Chanda Thakur	AE	SLDC-MP	thakur.chanda@gmail.com
58	Smt. Sunita Gader	AE	SLDC-MP	sunitagader@gmail.com

* Chhattisgarh and Madhya Pradesh SLDCs joined through Video Conferencing

Appendix 3

List of RTUs at each RLDCs and NLDC

Summary of all regions

			Total	Number of RTUs	Number of RTUs	Number of
S.			No. of	continuously	intermittently	RTUs not
No.	Region	Utility	RTUs	reporting	reporting	reporting
1		Central Sector	17	5	7	5
2		BBMB	18	10	8	0
3		Delhi	36	14	14	8
4		Haryana	45	12	16	17
5		Himachal Pradesh	10	5	4	1
6	NR	Jammu & Kashmir	6	0	3	3
7		Punjab	66	19	31	16
8		Rajasthan	105	55	32	18
		Uttar Pradesh &				
9		Uttarakhand	85	32	30	23
		Total	388	152	145	91
10		Central Sector	47	46	0	1
11		IPPs	69	39	0	30
12		DVC	30	18	0	12
13	ER	Jharkhand	15	6	0	9
14		Odisha	55	44	0	11
15		West Bengal	59	30	0	29
		Total	275	183	0	92
16		Central Sector	42	42	0	0
17		IPPs	24	24	0	0
18		Chhattisgarh	17	13	0	4
19		Daman & Diu	1	0	0	1
		Dadra & Nagar				
20	WR	Haveli	2	0	0	2
21		Goa	7	0	0	7
22	ļ	Gujarat	73	71	0	2
23		Madhya Pradesh	62	59	0	3
24		Maharashtra	155	105	0	50
		Total	383	314	0	69
25	SR	Central Sector	61	61	0	0

S.			Total No. of	Number of RTUs continuously	Number of RTUs intermittently	Number of RTUs not
No.	Region	Utility	RTUs	reporting	reporting	reporting
		Andhra Pradesh &				
26		Telangana	169	169	0	0
27		Karnataka	130	130	0	0
28		Kerala	34	34	0	0
29		Puducherry	17	17	0	0
30		Tamil Nadu	133	133	0	0
		Total	544	544	0	0
31		Central Sector	21	21	0	0
32		Assam	52	37	0	15
33		Manipur	7	0	0	7
34	NER	Meghalaya	16	12	0	4
35		Mizaram	1	0	0	1
36		Tripura	15	12	0	3
		Total	112	82	0	30
All India Total		1702	1275	145	282	

List of RTUs in Northern Region

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
1	Salal	NHPC	400	Reporting
2	Sambha	Powergrid	400	Intermittent
2	Sowa2 NH		400	Not
3	Sewaz_NII		400	Intermittent
4	Shree Cement		400	Intermittent
5	Sikar_PG	Powergrid	400	Intermittent
6	Singrauli	NTPC	400	Reporting
7	Sitarganj	Powergrid	400	Reporting
8	Sohewal	Powergrid	400	Reporting
				Not
9	Sonepat	Powergrid	400	Reporting
10	Tanakpur	NHPC	400	Intermittent
11	Tehri	THDC	400	Reporting
				Not
12	Unchahar	NTPC	400	Reporting
13	Uri	NHPC	400	Intermittent
				Not
14	Uri_2_NH	NHPC	400	Reporting
15	VINDH_WR	NHPC	400	Intermittent

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
16	Wagoora	Powergrid	400	Intermittent
				Not
17	Wanpo	Powergrid	400	Reporting
18	BHAKR_BB	BBMB	NA	Reporting
19	BHIWN_BB	BBMB	NA	Reporting
20	BLBGH_BB	BBMB	NA	Reporting
21	DADRI_BB	BBMB	NA	Reporting
22	DEHAR_BB	BBMB	NA	Reporting
23	DELHI_BB	BBMB	NA	Intermittent
24	DHULK_BB	BBMB	NA	Intermittent
25	GANGL_BB	BBMB	NA	Reporting
26	HISAR_BB	BBMB	NA	Reporting
27	JAMAL_BB	BBMB	NA	Intermittent
28	JGDRI_BB	BBMB	NA	Intermittent
29	JLNDR_BB	BBMB	NA	Intermittent
30	NRELA_BB	BBMB	NA	Intermittent
31	PANPT_BB	BBMB	NA	Reporting
32	PIPLI_BB	BBMB	NA	Intermittent
33	PONGBB	BBMB	NA	Reporting
34	SMYUR_BB	BBMB	NA	Reporting
35	SNGRU_BB	BBMB	NA	Intermittent
36	BAMNL_DV	Delhi	NA	Intermittent
37	BWANA_DV	Delhi	NA	Intermittent
38	CCGTB_DV	Delhi	NA	Intermittent
39	DAILDV	Delhi	NA	Not Reporting
40	DSIDC DV	Delhi	NA	Intermittent
	—			Not
41	DWRK1_DV	Delhi	NA	Reporting
42	DWRK2_DV	Delhi	NA	Intermittent
43	GAZIR_DV	Delhi	NA	Reporting
44	GEETA_DV	Delhi	NA	Reporting
45	GOPAL_DV	Delhi	NA	Intermittent
46	HARSH_DV	Delhi	NA	Intermittent
				Not
47	HCMLA_DV	Delhi	NA	Reporting
48	IPPOS_DV	Delhi	NA	Reporting
49	K_GAT_DV	Delhi	NA	Intermittent
50	KANJW_DV	Delhi	NA	Reporting
51	MBAGH_DV	Delhi	NA	Reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
52	MEHRU DV	Delhi	NA	Reporting
	=			Not
53	MSJID_DV	Delhi	NA	Reporting
54	MUNDK_DV	Delhi	NA	Reporting
55	NAJAG_DV	Delhi	NA	Intermittent
56	NAREL_DV	Delhi	NA	Reporting
				Not
57	NRINA_DV	Delhi	NA	Reporting
58	OKHLA_DV	Delhi	NA	Reporting
59	PARKS_DV	Delhi	NA	Reporting
60	PATPR_DV	Delhi	NA	Intermittent
61	PRGTI_DV	Delhi	NA	Reporting
				Not
62	RIDGE_DV	Delhi	NA	Reporting
63	ROHN2_DV	Delhi	NA	Intermittent
64	ROHNI_DV	Delhi	NA	Intermittent
65	SARIV_DV	Delhi	NA	Reporting
66	SHALI_DV	Delhi	NA	Intermittent
67	SUBZI_DV	Delhi	NA	Intermittent
				Not
68	TRUMA_DV	Delhi	NA	Reporting
69	VSANT_DV	Delhi	NA	Reporting
70	WAZID_DV	Delhi	NA	Reporting
				Not
71	WAZIR_DV	Delhi	NA	Reporting
70				Not
72	BADSH_HS	Haryana	NA	Reporting
73	βάττα μς	Harvana	NA	Reporting
/5	<u> </u>			Not
74	BHIWN_HS	Haryana	NA	Reporting
	—			Not
75	BSTRA_HS	Haryana	NA	Reporting
				Not
76	CHJPR_HS	Haryana	NA	Reporting
				Not
//		наryana	NA	керотting
78	DCRTP_HS	Haryana	NA	Intermittent
79	DHNDA_HS	Haryana	NA	Reporting
80	DLTBD_HS	Haryana	NA	Intermittent
01				Not
81	UPLPK_HS	нaryana	NA	кероrting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
82	FTEBD_HS	Haryana	NA	Intermittent
83	HISAR_HS	Haryana	NA	Reporting
84	JINDN_HS	Haryana	NA	Reporting
85	KBLPR_HS	Haryana	NA	Intermittent
86	KRNAL_HS	Haryana	NA	Intermittent
87	KRORI_HS	Haryana	NA	Not Reporting
88	KTHAL_HS	Haryana	NA	Reporting
89	LLAHR_HS	Haryana	NA	Reporting
90	MAJRA_HS	Haryana	NA	Reporting
91	MASDP_HS	Haryana	NA	Not Reporting
0.2				Not
92		Haryana	NA	Reporting
93	MGTPS_HS	Haryana	NA	Not
94	MHANA_HS	Haryana	NA	Reporting
95	MHIND_HS	Haryana	NA	Reporting
96	NARWN_HS	Haryana	NA	Intermittent
97	NISNG_HS	Haryana	NA	Reporting
98	NRNUL_HS	Haryana	NA	Reporting
99	NWADA_HS	Haryana	NA	Intermittent
100	NYWAL_HS	Haryana	NA	Intermittent
101	PALLA_HS	Haryana	NA	Intermittent
102	PANCH_HS	Haryana	NA	Intermittent
103	PANTH_HS	Haryana	NA	Intermittent
104	PHOWA_HS	Haryana	NA	Reporting
				Not
105	PLWAL_HS	Haryana	NA	Reporting
106		Harvana	NA	NOT
100	RGTPS HS	Harvana	NA	Intermittent
107	ROTAK HS	Harvana	NA	Intermittent
100		That yana	INA.	Not
109	RWARI_HS	Haryana	NA	Reporting
110	SAGWN_HS	Haryana	NA	Not Reporting
111	SALEM_HS	Haryana	NA	Reporting
112	SEC72_HS	Haryana	NA	Not Reporting
113	SFDON_HS	Haryana	NA	Reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
114	SHBAD_HS	Haryana	NA	Intermittent
115	SIRSA_HS	Haryana	NA	Intermittent
				Not
116	SONEP_HS	Haryana	NA	Reporting
117	BADDI_HP	Himachal Pradesh	NA	Intermittent
118	BASPA_HP	Himachal Pradesh	NA	Reporting
119	BHABA_HP	Himachal Pradesh	NA	Intermittent
120	GIRIHP	Himachal Pradesh	NA	Intermittent
121	HAM2P_HP	Himachal Pradesh	NA	Reporting
122	JASOR_HP	Himachal Pradesh	NA	Reporting
123	JEORI_HP	Himachal Pradesh	NA	Intermittent
124	KANGO_HP	Himachal Pradesh	NA	Reporting
125	KUNIH_HP	Himachal Pradesh	NA	Reporting
				Not
126	UPNGL_HP	Himachal Pradesh	NA	Reporting
127	BGLHR_JK	Jammu and Kashmir	NA	Intermittent
128	GLDNI_JK	Jammu and Kashmir	NA	Intermittent
				Not
129	HRNGR_JK	Jammu and Kashmir	NA	Reporting
120			NIA	Not
130			NA	Reporting
131	UDHAM_JK	Jammu and Kashmir	NA	Intermittent
132	ΖΝΚΟΤ ΙΚ	Jammu and Kashmir	NA	Reporting
133	ARIWI PS	Puniah	NA	Intermittent
135		i unjub		Not
134	BAGHA_PS	Punjab	NA	Reporting
135	BAJAK_PS	Punjab	NA	Intermittent
136	BARNL_PS	Punjab	NA	Reporting
137	BGARH_PS	Punjab	NA	Reporting
	—			Not
138	BOTIA_PS	Punjab	NA	Reporting
139	BUTRI_PS	Punjab	NA	Intermittent
140	CLASR_PS	Punjab	NA	Reporting
141	DASYA_PS	Punjab	NA	Reporting
142	DERAB_PS	Punjab	NA	Intermittent
143	DHNDR_PS	Punjab	NA	Intermittent
144	DHUR4_PS	Punjab	NA	Intermittent
				Not
145	DHURI_PS	Punjab	NA	Reporting
146	FATEH_PS	Punjab	NA	Intermittent
S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
-----------	----------------------------	-----------	------------------	--------------
				Not
147	FIROZ_PS	Punjab	NA	Reporting
148	FRLDH_PS	Punjab	NA	Intermittent
149	GGSTP_PS	Punjab	NA	Reporting
150	GHTPPS	Punjab	NA	Reporting
151	GNDTP_PS	Punjab	NA	Reporting
152	GOBIN_PS	Punjab	NA	Intermittent
153	GOBIN_PS	Punjab	NA	Intermittent
154	GOBIO_PS	Punjab	NA	Intermittent
155	GORAY_PS	Punjab	NA	Intermittent
156	GUBYA_PS	Punjab	NA	Intermittent
				Not
157	GWLTP_PS	Punjab	NA	Reporting
158	HIMAT_PS	Punjab	NA	Intermittent
159	HMBRA_PS	Punjab	NA	Intermittent
160	JGRAO_PS	Punjab	NA	Reporting
161		Duniah	NIA	Not
101	JHUNK_PS	Punjab	INA	Not
162	JMSHR_PS	Punjab	NA	Reporting
				Not
163	KANJL_PS	Punjab	NA	Reporting
164		Destate	N 1 A	Not
164	KARTA_PS	Punjab	NA	Reporting
165	KINGA PS	Puniah	NA	Reporting
166	KSURT PS	Punjab	NA	Intermittent
167		Punjab	NA	Intermittent
168		Punjab	NA	Intermittent
169		Punjab	NA	Intermittent
170	MALER PS	Punjab	NA	Reporting
170	MALER_FS	Punjab	NA	Intermittent
171		Punjab	NA	Reporting
172		Punjab	NA	Reporting
175		Fulijab	INA	Not
174	MKTS4_PS	Punjab	NA	Reporting
175	MLOT2_PS	Punjab	NA	Reporting
				Not
176	MNSA2_PS	Punjab	NA	Reporting
177	MOGA4_PS	Punjab	NA	Intermittent
178	MOGAN_PS	Punjab	NA	Intermittent

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
179	MOHL2 PS	Punjab	NA	Intermittent
180	MOHLI PS	Punjab	NA	Reporting
181	NABHA PS	Puniab	NA	Intermittent
182	NKDR4 PS	Punjab	NA	Intermittent
183	PATRA PS	Punjab	NA	Reporting
184	PATTI PS	Punjab	NA	Intermittent
185		Puniah	NA	Not
105			INA	Not
186	RAJLA_PS	Punjab	NA	Reporting
187	RAJPR_PS	Punjab	NA	Intermittent
188	RJPR4_PS	Punjab	NA	Intermittent
189	RJPTS_PS	Punjab	NA	Reporting
190	RSDPH_PS	Punjab	NA	Intermittent
191	SADQ2_PS	Punjab	NA	Reporting
192	SAHNE_PS	Punjab	NA	Reporting
193	SARNA_PS	Punjab	NA	Reporting
				Not
194	SULTN_PS	Punjab	NA	Reporting
195	SUNAM_PS	Punjab	NA	Intermittent
196	TLDTP_PS	Punjab	NA	Not Reporting
197	VERPL_PS	Punjab	NA	Reporting
198	 WDALA_PS	Punjab	NA	Intermittent
199	ADANI_RS	Rajasthan	NA	Reporting
200	AJMER_RS	Rajasthan	NA	Reporting
201	AKAL4_RS	Rajasthan	NA	Intermittent
202	ALMIA_RS	Rajasthan	NA	Reporting
203	ALWAR_RS	Rajasthan	NA	Reporting
204	ALWR4 RS	Raiasthan	NA	Not Reporting
205	AMSGR RS	Rajasthan	NA	Reporting
206	BAGRU RS	Raiasthan	NA	Intermittent
207	BALI RS	Rajasthan	NA	Intermittent
208	BARAN RS	Rajasthan	NA	Reporting
209	BARMR RS	Rajasthan	NA	Reporting
		J		Not
210	BARSR_RS	Rajasthan	NA	Reporting
211	BEWAR_RS	Rajasthan	NA	Intermittent
212	BHART_RS	Rajasthan	NA	Reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
213	BHDRA_RS	Rajasthan	NA	Intermittent
214	BHIL4 RS	Rajasthan	NA	Reporting
	— —			Not
215	BHIWR_RS	Rajasthan	NA	Reporting
216	BHNML_RS	Rajasthan	NA	Reporting
217	BILRA_RS	Rajasthan	NA	Reporting
218	BKNER_RS	Rajasthan	NA	Intermittent
219	BKNR4_RS	Rajasthan	NA	Intermittent
220	BLOTR_RS	Rajasthan	NA	Intermittent
221	BNSWR_RS	Rajasthan	NA	Reporting
222		Paiasthan	NA	Not
222	BORND_RS	Rajasthan	NA	Reporting
223	BPGRH_RS	Rajasthan	NA	Reporting
224	CHIRW_RS	Rajasthan	NA	Reporting
225	CHITO_RS	Rajasthan	NA	Reporting
226	CHOMU_RS	Rajasthan	NA	Reporting
227	CHTPS_RS	Rajasthan	NA	Intermittent
228	DAUSA_RS	Rajasthan	NA	Intermittent
229	DCCPP_RS	Rajasthan	NA	Reporting
230	DEBAR_RS	Rajasthan	NA	Reporting
231	DECHU_RS	Rajasthan	NA	Reporting
232	DEED4_RS	Rajasthan	NA	Intermittent
233	DHODRS	Rajasthan	NA	Intermittent
234	DLPUR_RS	Rajasthan	NA	Intermittent
				Not
235	DRMNA_RS	Rajasthan	NA	Reporting
236	DUNIRS	Rajasthan	NA	Intermittent
237	DYRARS	Rajasthan	NA	Reporting
238	FLODI_RS	Rajasthan	NA	Not Reporting
239	GAJNR_RS	Rajasthan	NA	Not Reporting
240	GIRAL_RS	Rajasthan	NA	Intermittent
241	GULPR_RS	Rajasthan	NA	Reporting
242	HANUM_RS	Rajasthan	NA	Reporting
243	HEERP_RS	Rajasthan	NA	Reporting
244	HEERP_RS	Rajasthan	NA	Reporting
245	HERP2_RS	Rajasthan	NA	Reporting
246	HIND4_RS	Rajasthan	NA	Reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
				Not
247	HNDUN_RS	Rajasthan	NA	Reporting
248	IGNGR_RS	Rajasthan	NA	Reporting
249	JALOR_RS	Rajasthan	NA	Intermittent
250	JDHPR_RS	Rajasthan	NA	Reporting
251	JHALR_RS	Rajasthan	NA	Reporting
252	JHUNJ_RS	Rajasthan	NA	Intermittent
253	JODH4_RS	Rajasthan	NA	Reporting
254	KATPP_RS	Rajasthan	NA	Intermittent
255	KGBAS_RS	Rajasthan	NA	Reporting
				Not
256	KHIWR_RS	Rajasthan	NA	Reporting
257	KHTRI_RS	Rajasthan	NA	Reporting
258	KHUSH_RS	Rajasthan	NA	Reporting
250	KMCTV RS	Rajasthan	NA	Not
239		Rajastilali	NA	Not
260	KNGRH_RS	Rajasthan	NA	Reporting
261	KNKRL_RS	Rajasthan	NA	Intermittent
262	KOTAS_RS	Rajasthan	NA	Reporting
263	KOTPL_RS	Rajasthan	NA	Reporting
264	KTPSRS	Rajasthan	NA	Reporting
265	KUKAS_RS	Rajasthan	NA	Reporting
				Not
266	LALST_RS	Rajasthan	NA	Reporting
267	MERTA_RS	Rajasthan	NA	Intermittent
268	MKRNA_RS	Rajasthan	NA	Reporting
269	MNDWR_RS	Rajasthan	NA	Reporting
270	MORAK_RS	Rajasthan	NA	Reporting
271	NAGUR_RS	Rajasthan	NA	Intermittent
				Not
272	NDBAI_RS	Rajasthan	NA	Reporting
				Not
273	NIMBH_RS	Rajasthan	NA	Reporting
274	NMRNA_RS	Rajasthan	NA	Intermittent
275	NOKHA_RS	Rajasthan	NA	Reporting
276	PADAM RS	Rajasthan	NA	Not Reporting
277	– PALI RS	Rajasthan	NA	Reporting
278	PHULR RS	Rajasthan	NA	Reporting
279	PINDW RS	Rajasthan	NA	Reporting
215		najastnan	11/7	reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
280	RAJWT RS	Raiasthan	NA	Reporting
281	RAS RS	Rajasthan	NA	Reporting
282	RATAN RS	Rajasthan	NA	Reporting
283	RATN4 RS	Rajasthan	NA	Intermittent
284	RATN4 RS	Rajasthan	NA	Intermittent
285	RFFNG RS	Rajasthan	NA	Intermittent
286	RENWL RS	Rajasthan	NA	Intermittent
287	RIWND RS	Rajasthan	NA	Reporting
207		hajastnan		Not
288	SAWARS	Rajasthan	NA	Reporting
289	SDUNG_RS	Rajasthan	NA	Intermittent
290	SEZ_1_RS	Rajasthan	NA	Intermittent
291	SGNER_RS	Rajasthan	NA	Reporting
292	SGNGR_RS	Rajasthan	NA	Reporting
293	SIKAR_RS	Rajasthan	NA	Intermittent
294	SNCHR_RS	Rajasthan	NA	Intermittent
295	SROHI_RS	Rajasthan	NA	Reporting
296	SUJAN_RS	Rajasthan	NA	Intermittent
297	SURAT_RS	Rajasthan	NA	Reporting
298	SURTP_RS	Rajasthan	NA	Reporting
299	SURTP_RS	Rajasthan	NA	Reporting
300	SWAIM_RS	Rajasthan	NA	Intermittent
301	TINWR_RS	Rajasthan	NA	Reporting
302	VKIARS	Rajasthan	NA	Reporting
303	VSLPRS	Rajasthan	NA	Not Reporting
304	AGRA2_UP	Uttar Pradesh	NA	Intermittent
305	ALHA2_UP	Uttar Pradesh	NA	Reporting
306	ALHAC_UP	Uttar Pradesh	NA	Reporting
307	ATRLI_UP	Uttar Pradesh	NA	Intermittent
308	AZAM2_UP	Uttar Pradesh	NA	Reporting
309	BADUN_UP	Uttar Pradesh	NA	Not Reporting
310	BANDA_UP	Uttar Pradesh	NA	Intermittent
			• • •	Not
311	BARUT_UP	Uttar Pradesh	NA	Reporting
212	ΒΛΩΤΙ ΙΙΟ	l Ittar Pradesh	N/A	Not
512			IN A	Not
313	BEHAT_UP	Uttar Pradesh	NA	Reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
		•		Not
314	BHLPR_UP	Uttar Pradesh	NA	Reporting
315	BHRTN_UP	Uttar Pradesh	NA	Reporting
316	BTHOR_UP	Uttar Pradesh	NA	Reporting
317	CBGA2_UP	Uttar Pradesh	NA	Reporting
318	CHIBM_UP	Uttar Pradesh	NA	Intermittent
319	CHINT_UP	Uttar Pradesh	NA	Reporting
320	CHRLA_UP	Uttar Pradesh	NA	Reporting
321	DADRI_UP	Uttar Pradesh	NA	Intermittent
322	DOHNA_UP	Uttar Pradesh	NA	Reporting
323	DORIA_UP	Uttar Pradesh	NA	Not Reporting
324	ETAHUP	Uttar Pradesh	NA	Reporting
				Not
325	FARID_UP	Uttar Pradesh	NA	Reporting
326	FRZBD_UP	Uttar Pradesh	NA	Intermittent
327	FTEPR_UP	Uttar Pradesh	NA	Intermittent
				Not
328	GJOKR_UP	Uttar Pradesh	NA	Reporting
329	GJRLA_UP	Uttar Pradesh	NA	Reporting
220		Litter Dredech	NIA	Not
330	GONUL_UP	Uttar Pradesh	NA	Reporting
222		Uttar Pradesh	NA	Reporting
332	GONDA_OP	Ottar Pradesh	NA	Not
333	GRK 2 LIP	Uttar Pradesh	NA	Reporting
				Not
334	GRK2N_UP	Uttar Pradesh	NA	Reporting
335	GZIPR_UP	Uttar Pradesh	NA	Intermittent
				Not
336	HAROD_UP	Uttar Pradesh	NA	Reporting
				Not
337	HATRS_UP	Uttar Pradesh	NA	Reporting
220		Littor Drodock	N I A	Not
338		Uttar Pradesh	INA	Reporting
339		Uttar Pradesh	INA	кероттіпд
340		Uttar Pradesh	NA	intermittent
341	JAYPE_UP	Uttar Pradesh	NA	Reporting
2/17		Littar Dradoch	N/A	Reporting
2/2		Littar Dradach	INA	Intermittent
545			INA	mermillent

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
344	JHUSI_UP	Uttar Pradesh	NA	Intermittent
345	JUNPR_UP	Uttar Pradesh	NA	Intermittent
346	KANPR_UP	Uttar Pradesh	NA	Reporting
347	KANPS_UP	Uttar Pradesh	NA	Reporting
348	KHARA_UP	Uttar Pradesh	NA	Reporting
349	KHODR_UP	Uttar Pradesh	NA	Not Reporting
350	KHURJ_UP	Uttar Pradesh	NA	Reporting
351	LONIUP	Uttar Pradesh	NA	Intermittent
352	LUCK2_UP	Uttar Pradesh	NA	Reporting
353	MAINP_UP	Uttar Pradesh	NA	Reporting
354	MEUPT_UP	Uttar Pradesh	NA	Intermittent
355	MORA2_UP	Uttar Pradesh	NA	Intermittent
356	MUR2N_UP	Uttar Pradesh	NA	Reporting
357	MUZA2_UP	Uttar Pradesh	NA	Intermittent
358	NANAU_UP	Uttar Pradesh	NA	Intermittent
359	NETHR_UP	Uttar Pradesh	NA	Reporting
360	NOIDA_UP	Uttar Pradesh	NA	Intermittent
361	OBRAA_UP	Uttar Pradesh	NA	Reporting
362	ORAIUP	Uttar Pradesh	NA	Not Reporting
363	PANK2_UP	Uttar Pradesh	NA	Reporting
364	PANKT_UP	Uttar Pradesh	NA	Reporting
365	PHLPR_UP	Uttar Pradesh	NA	Intermittent
366	PRINC_UP	Uttar Pradesh	NA	Not Reporting
367	RAIBR_UP	Uttar Pradesh	NA	Not Reporting
368	RAMPR_UP	Uttar Pradesh	NA	Not Reporting
369	RASRA_UP	Uttar Pradesh	NA	Not Reporting
370	RCGRN_UP	Uttar Pradesh	NA	Intermittent
371	RPH_2_UP	Uttar Pradesh	NA	Reporting
272		Litter Dredsst	NIA	Not
3/2		Uttar Pradesh	NA	Reporting
3/3		Uttar Pradesh	NA	Reporting
3/4	SAMBH_UP	Uttar Pradesh	NA	Intermittent
375	SBHLI_UP	Uttar Pradesh	NA	Keporting
376	SC129_UP	Uttar Pradesh	NA	Intermittent

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
377	SEC62_UP	Uttar Pradesh	NA	Intermittent
378	SHARN_UP	Uttar Pradesh	NA	Intermittent
379	SHATB_UP	Uttar Pradesh	NA	Intermittent
380	SHIBD_UP	Uttar Pradesh	NA	Reporting
381	SHJHA_UP	Uttar Pradesh	NA	Intermittent
				Not
382	SHMBD_UP	Uttar Pradesh	NA	Reporting
383	SHMLI_UP	Uttar Pradesh	NA	Reporting
384	SHWLUP	Uttar Pradesh	NA	Intermittent
385	SITPR_UP	Uttar Pradesh	NA	Intermittent
386	SKNBD_UP	Uttar Pradesh	NA	Intermittent
387	SULT2_UP	Uttar Pradesh	NA	Reporting
388	TANDA_UP	Uttar Pradesh	NA	Reporting

List of RTUs in Eastern Region

S.	Name/Code of RTU or		Voltage	
No.	SAS	Ownership	level	Status
1	Angul	Powergrid	765/400/220	Reporting
				Not
2	Arrah	Powergrid	220/132	Reporting
3	Banka	Powergrid	400/220	Reporting
4	Barh	NTPC	400	Reporting
5	Berhampur	Powergrid	400	Reporting
6	Bheramera	Powergrid	400	Reporting
7	Biharsariff	Powergrid	400/220	Reporting
8	Birpara	Powergrid	220/132	Reporting
9	Bolangir	Powergrid	400	Reporting
10	Chaibasa	Powergrid	400/220	Reporting
11	Dalkhola	Powergrid	220/132	Reporting
12	Durgapur	Powergrid	400/220	Reporting
13	Farakka	Powergrid	400/220	Reporting
14	Gangtak	Powergrid	132	Reporting
15	Gaya 765KV S/S	Powergrid	765/400/220	Reporting
16	Indravati	Powergrid	400	Reporting
17	Jamshedpur	Powergrid	400/220	Reporting
18	Jeypore	Powergrid	400/220	Reporting
19	Jharsuguda	Powergrid	765/400	Reporting
20	Kalabadia	Powergrid	400/220/132	Reporting
21	Keonjhar	Powergrid	400	Reporting

S.	Name/Code of RTU or		Voltage	.
No.	SAS	Ownership	level	Status
22	KhSTPP	Powergrid	400/132	Reporting
23	Lakshisarai	Powergrid	400/220	Reporting
24	Lalmatia	Powergrid	220/132	Reporting
25	Maithon	Powergrid	400/220	Reporting
26	Maldah	Powergrid	400/132	Reporting
27	Melli	Powergrid	132	Reporting
28	Muzaffarpur	Powergrid	400/220	Reporting
29	Nabinagar	Powergrid	400	Reporting
30	New Farakka	NTPC	400	Reporting
31	New Ranchi	Powergrid	765/400	Reporting
32	New sasaram	Powergrid	765/400	Reporting
33	Patna	Powergrid	400	Reporting
34	Purnea	Powergrid	220/132	Reporting
35	Purnea New	Powergrid	400/220	Reporting
36	Ranchi	Powergrid	400/220	Reporting
37	Rangit	Powergrid	132	Reporting
38	Rangpo	Powergrid	400/220/132	Reporting
39	Rengali	Powergrid	400/220	Reporting
40	Rourkela	Powergrid	400/220	Reporting
41	Sasaram	Powergrid	400/220	Reporting
42	Siliguri 220	Powergrid	220/132	Reporting
43	Siliguri 400	Powergrid	400/220	Reporting
44	Subhasgram	Powergrid	400/220	Reporting
45	Teesta	Powergrid	400	Reporting
46	THVDC	Powergrid	400	Reporting
47	TSTPP	Powergrid	400/220	Reporting
48	ACTION ISPAT	ACTION ISPAT	132	Reporting
49	ADITY ALLUMINIUM	ADITY ALLUMINIUM	220	Reporting
50	AISCL	AISCL	132	Reporting
51	APNRL	APNRL	400	Reporting
				Not
52	ARATI STEELS	ARATI STEELS	132	Reporting
53	BEGUSARAI	BSPTCL	220/132	Reporting
54	BHUSAN THELKOI	BHUSAN THELKOI	132	Reporting
55	BIHARSHARIF	BSPTCL	220/132	Reporting
56	BODHGAYA	BSPTCL	220/132	Reporting
				Not
57	BRPL	BRPL	132	Reporting
58	BSLGR	BSL	220	Reporting

NO.SASOWNERSINDTeverStatus59CHANDAUTIBSPTCL132Reporting60ChuzachenChuzachen132Reporting61CONCAST IRONCONCAST IRON220Reporting62DARBHANGABSPTCL132Reporting63DEHRIBSPTCL220/132Reporting64DUMRAONBSPTCL220/132Reporting65EMAMIEMAMI132Reporting66FATHWABSPTCL132Reporting67GMRGMR400Reporting68HAIJPURBSPTCL132Reporting69HALCPHALCP132Reporting70HATHIDAHBSPTCL132Reporting71HAZIPUR NEWBSPTCL220/132Reporting73IB TPSIB TPS400/220Reporting74ICCLICCL132Reporting75IMFAAIMFAA132Reporting76IndbarathIndbarath400Reporting77JAKKANPURBSPTCL132Reporting78JAYSHREECHEMICALSJAYSHREECHEMICALS132Reporting79JITPLJITPL400Reporting80JK PAPERJSL220Reporting81JSLJSPLAJSPLA400/220Reporting84KARMANSHABSPTCI132Reporting85KHAGULIBSPTCI	S.	Name/Code of RTU or	Quanarahin	Voltage	Status
39 CHANDACHT BSPTCL 132 Reporting 60 Chuzachen Chuzachen 132 Reporting 61 CONCAST IRON CONCAST IRON 220 Reporting 62 DARBHANGA BSPTCL 132 Reporting 63 DEHRI BSPTCL 220/132 Reporting 64 DUMRAON BSPTCL 220/132 Reporting 64 DUMRAON BSPTCL 220/132 Reporting 65 EMAMI EMAMI 132 Reporting 66 FATHWA BSPTCL 132 Reporting 67 GMR GMR 400 Reporting 68 HAJIPUR BSPTCL 132 Reporting 69 HALCP HALCP 132 Reporting 70 HATHIDAH BSPTCL 132 Reporting 71 HAZIPUR NEW BSPTCL 132 Reporting 73 IB TPS IB TPS Mot Reporting 74 ICCL ICCL ICCL Not Reportin			Ownership	122	Bonorting
60 CHUZACHEN 1.32 REpOrting 61 CONCAST IRON CONCAST IRON 220 Reporting 61 CONCAST IRON CONCAST IRON Not 62 DARBHANGA BSPTCL 132 Reporting 63 DEHRI BSPTCL 220/132 Reporting 64 DUMRAON BSPTCL 220/132 Reporting 65 EMAMI EMAMI 132 Reporting 66 FATHWA BSPTCL 132 Reporting 67 GMR GMR 400 Reporting 68 HAJIPUR BSPTCL 132 Reporting 69 HALCP HALCP 132 Reporting 70 HATHIDAH BSPTCL 132 Reporting 71 HAZIPUR NEW BSPTCL 132 Reporting 73 IB TPS IB TPS 400/220 Reporting 74 ICCL ICCL 132 Reporting 75 IMFAA IMFAA 132 Reporting 74 ICCL	59	CHANDAUT	BSPICE	132	Reporting
61CONCAST IRONCONCAST IRON220Reporting62DARBHANGABSPTCL132Reporting63DEHRIBSPTCL220/132Reporting64DUMRAONBSPTCL220/132Reporting65EMAMIEMAMI132Reporting66FATHWABSPTCL132Reporting67GMRGMR400Reporting68HAJIPURBSPTCL132Reporting69HALCPHALCP132Reporting70HATHIDAHBSPTCL132Reporting71HAZIPUR NEWBSPTCL132Reporting72HINDALCOHINDALCO132Reporting73IB TPSJAVSHREECHEMICALSJAVSHREECHEMICALSNot74ICCLICCL132Reporting75IMFAAIIMFAA132Reporting76IndbarathJAVSHREECHEMICALS132Reporting73JAYSHREECHEMICALSJAYSHREECHEMICALS132Reporting74JAYSHREECHEMICALSJAYSHREECHEMICALS132Reporting75JAYSHREECHEMICALSJAYSHREECHEMICALS132Reporting74JSLJSPL220Reporting75JAYSHREECHEMICALSJAYSHREECHEMICALS132Reporting76SLAJSPLAJSPLA400/220Reporting76SLAJSPLAJSPLAReporting77JAKKANPURBSPTCL <t< td=""><td>60</td><td>Chuzachen</td><td>Chuzachen</td><td>132</td><td>Reporting</td></t<>	60	Chuzachen	Chuzachen	132	Reporting
61 CONCAST IRON 220 Reporting 62 DARBHANGA BSPTCL 132 Reporting 63 DEHRI BSPTCL 220/132 Reporting 64 DUMRAON BSPTCL 220/132 Reporting 64 DUMRAON BSPTCL 220/132 Reporting 65 EMAMI EMAMI 132 Reporting 66 FATHWA BSPTCL 132 Reporting 67 GMR GMR 400 Reporting 68 HAJIPUR BSPTCL 132 Reporting 69 HALCP HALCP Not Reporting 70 HATHIDAH BSPTCL 132 Reporting 71 HAZIPUR NEW BSPTCL 132 Reporting 73 IB TPS IB TPS 400/220 Reporting 74 ICCL ICCL 132 Reporting 75 IMFAA IMFAA 132 Reporting 76 Indbarath 400 Reporting 75 IMFAA <td< td=""><td></td><td></td><td></td><td>220</td><td>Not</td></td<>				220	Not
62DARBHANGABSPTCL132Reporting63DEHRIBSPTCL220/132Reporting64DUMRAONBSPTCL220/132Reporting65EMAMIEMAMI132Reporting66FATHWABSPTCL132Reporting67GMRGMR400Reporting68HAJIPURBSPTCL132Reporting69HALCPHALCP132Reporting70HATHIDAHBSPTCL132Reporting70HATHIDAHBSPTCL132Reporting71HAZIPUR NEWBSPTCL132Reporting72HINDALCOHINDALCO132Reporting73IB TPSIB TPS400/220Reporting74ICCLICCL132Reporting75IMFAAIMFAA132Reporting76Indbarath400Reporting77JAKKANPURBSPTCL132Reporting78JAYSHREECHEMICALSJAYSHREECHEMICALS132Reporting79JITPLJITPLJITPL400Reporting80JK PAPERJSPLA220Reporting81JSLJSPLAJSPLA200Reporting84KARMANSHABSPTCL132Reporting84KARMANSHABSPTCL132Reporting	61	CONCAST IRON	CONCAST IRON	220	Reporting
63DEHRIBSPTCL220/132Reporting64DUMRAONBSPTCL220/132Reporting65EMAMIEMAMI132Reporting66FATHWABSPTCL132Reporting67GMRGMR400Reporting68HAJIPURBSPTCL132Reporting69HALCPHALCP132Reporting70HATHIDAHBSPTCL132Reporting71HAZIPUR NEWBSPTCL132Reporting72HINDALCOHINDALCO132Reporting73IB TPSIB TPS400/220Reporting74ICCLICCL132Reporting75IMFAAIMFAA132Reporting76Indbarath400Reporting75JAKKANPURBSPTCL132Reporting75JAKKANPURBSPTCL132Reporting76INDFAAIMFAA132Reporting77JAKKANPURBSPTCL132Reporting78JAYSHREECHEMICALSJAYSHREECHEMICALS132Reporting79JITPLJITPLJITPL400Reporting79JSL220ReportingReporting74KARMANSHABSPTCL132Reporting75KARMANSHABSPTCL132Reporting76KARMANSHABSPTCL132Reporting77JSLAGADReporting	62	DARBHANGA	BSPTCL	132	Not Reporting
64DUMRAONBSPTCL220/132Not Reporting65EMAMIEMAMI132Reporting66FATHWABSPTCL132Reporting67GMRGMR400Reporting68HAIIPURBSPTCL132Reporting69HALCPHALCP132Reporting70HATHIDAHBSPTCL132Reporting70HATHIDAHBSPTCL132Reporting71HAZIPUR NEWBSPTCL132Reporting72HINDALCOHINDALCO132Reporting73IB TPSIB TPS400/220Reporting74ICCLICCL132Reporting75IMFAAIMFAA132Reporting76IndbarathIndbarath400Reporting77JAKKANPURBSPTCL132Reporting78JAYSHREECHEMICALSJAYSHREECHEMICALS132Reporting79JITPLJITPLJONReporting80JK PAPERJK PAPER132Reporting81JSLJSPLA400/220Reporting83JSPLAJSPLAA00/220Reporting84KARMANSHABSPTCL132Reporting85KHAGAULBSPTCL132Reporting	63	DEHRI	BSPTCL	220/132	Reporting
65EMAMIEMAMI132Not Reporting66FATHWABSPTCL132Reporting67GMRGMR400Reporting68HAJIPURBSPTCL132Reporting69HALCPHALCP132Reporting69HALCPHALCP132Reporting70HATHIDAHBSPTCL132Reporting71HAZIPUR NEWBSPTCL220/132Reporting72HINDALCOHINDALCO132Reporting73IB TPSIB TPS400/220Reporting74ICCLICCL132Reporting75IMFAAIIMFAA132Reporting76IndbarathIndbarath400Reporting77JAKKANPURBSPTCL132Reporting78JAYSHREECHEMICALSJAYSHREECHEMICALS132Reporting79JITPLJITPLJITPL400Reporting80JK PAPERJSL220Reporting81JSLJSPLAJSPLA220Reporting83JSPLAJSPLAJSPLA400/220Reporting84KARMANSHABSPTCL132Reporting85KHAGAULBSPTCL132Reporting85KHAGAULBSPTCL132Reporting	64	DUMRAON	BSPTCL	220/132	Not Reporting
66FATHWABSPTCL132Reporting67GMRGMR400Reporting68HAJIPURBSPTCL132Reporting69HALCPHALCP132Reporting69HALCPHALCP132Reporting70HATHIDAHBSPTCL132Reporting71HAZIPUR NEWBSPTCL220/132Reporting72HINDALCOHINDALCO132Reporting73IB TPSIB TPS400/220Reporting74ICCLICCL132Reporting75IMFAAIMFAA132Reporting76IndbarathIndbarath400Reporting77JAKKANPURBSPTCL132Reporting78JAYSHREECHEMICALSJAYSHREECHEMICALS132Reporting80JK PAPERJJK PAPER132Reporting81JSLJSLJSPLAJSPLAA00/220Reporting83JSPLAJSPLAJSPLAA00/220Reporting84KARMANSHABSPTCL132Reporting85KHAGAULBSPTCL132Reporting	65	EMAMI	EMAMI	132	Not Reporting
67GMRGMR400Reporting68HAJIPURBSPTCL132Reporting69HALCPHALCP132Reporting70HATHIDAHBSPTCL132Reporting70HATHIDAHBSPTCL132Reporting71HAZIPUR NEWBSPTCL220/132Reporting72HINDALCOHINDALCO132Reporting73IB TPSIB TPS400/220Reporting74ICCLICCL132Reporting75IMFAAIMFAA132Reporting76IndbarathIndbarath400Reporting77JAKKANPURBSPTCL132Reporting78JAYSHREECHEMICALSJAYSHREECHEMICALS132Reporting80JK PAPERJK PAPER132Reporting81JSLJSLJSPL220Reporting83JSPLAJSPLAJSPLA400/220Reporting84KARMANSHABSPTCL132Reporting85KHAGAULBSPTCL132Reporting	66	FATHWA	BSPTCL	132	Reporting
68HAJIPURBSPTCL132Reporting69HALCPHALCP132Reporting70HATHIDAHBSPTCL132Reporting71HAZIPUR NEWBSPTCL220/132Reporting72HINDALCOHINDALCO132Reporting73IB TPSIB TPS400/220Reporting74ICCLICCL132Reporting75IMFAAIMFAA132Reporting76IndbarathIndbarath400Reporting77JAKKANPURBSPTCL132Reporting78JAYSHREECHEMICALSJAYSHREECHEMICALS132Reporting79JITPLJITPLJITPL400Reporting80JK PAPERJK PAPER132Reporting81JSLJSL220Reporting83JSPLAJSPLAJSPLA400/220Reporting84KARMANSHABSPTCL132Reporting85KHAGAULBSPTCL220/132Reporting	67	GMR	GMR	400	Reporting
69HALCPHALCPNot Reporting69HATHIDAHBSPTCL132Reporting70HATHIDAHBSPTCL132Reporting71HAZIPUR NEWBSPTCL220/132Reporting72HINDALCOHINDALCO132Reporting73IB TPSIB TPS400/220Reporting74ICCLICCL132Reporting75IMFAAIMFAA132Reporting76IndbarathIndbarath400Reporting77JAKKANPURBSPTCL132Reporting78JAYSHREECHEMICALSJAYSHREECHEMICALS132Reporting79JITPLJITPL400Reporting80JK PAPERJK PAPER132Reporting81JSLJSLJSL220Reporting83JSPLAJSPLA400/220Reporting84KARMANSHABSPTCL132Reporting85KHAGAULBSPTCL220/132Reporting	68	HAJIPUR	BSPTCL	132	Reporting
OSINTECINTECIS2Reporting70HATHIDAHBSPTCL132Reporting71HAZIPUR NEWBSPTCL220/132Reporting72HINDALCOHINDALCO132Reporting73IB TPSIB TPS400/220Reporting74ICCLICCL132Reporting75IMFAAIMFAA132Reporting76IndbarathIndbarath400Reporting77JAKKANPURBSPTCL132Reporting78JAYSHREECHEMICALSJAYSHREECHEMICALS132Reporting79JITPLJITPL400Reporting80JK PAPERJSL220Reporting81JSLJSL220Reporting83JSPLAJSPLAJSPLA400/220Reporting84KARMANSHABSPTCL132Reporting85KHAGAULBSPTCL220/132Reporting	69	HALCP	HALCP	132	Not Reporting
70HATHIDAHBSPTCL132Reporting71HAZIPUR NEWBSPTCL220/132Reporting72HINDALCOHINDALCO132Reporting73IB TPSIB TPS400/220Reporting74ICCLICCL132Reporting75IMFAAIMFAA132Reporting76IndbarathIndbarath400Reporting77JAKKANPURBSPTCL132Reporting78JAYSHREECHEMICALSJAYSHREECHEMICALS132Reporting79JITPLJITPL400Reporting80JK PAPERJSL220Reporting81JSLJSL220Reporting83JSPLAJSPLAJSPLA400/220Reporting84KARMANSHABSPTCL132Reporting85KHAGAUILBSPTCL220/132Reporting	05		TIALCI	152	Not
NotNot71HAZIPUR NEWBSPTCL220/132Reporting72HINDALCOHINDALCO132Reporting73IB TPSIB TPS400/220Reporting74ICCLIB TPS400/220Reporting75IMFAAIMFAA132Reporting76IndbarathIndbarath400Reporting77JAKKANPURBSPTCL132Reporting78JAYSHREECHEMICALSJAYSHREECHEMICALS132Reporting79JITPLJITPLJITPL400Reporting80JK PAPERJK PAPER132Reporting81JSLJSPL220Reporting83JSPLAJSPLAJSPLA400/220Reporting84KARMANSHABSPTCL132Reporting85KHAGAULBSPTCL220/132Reporting	70	HATHIDAH	BSPTCL	132	Reporting
72HINDALCOHINDALCO132Reporting73IB TPSIB TPS400/220Reporting74ICCLICCL132Reporting75IMFAAIMFAA132Reporting76IndbarathIndbarath400Reporting77JAKKANPURBSPTCL132Reporting78JAYSHREECHEMICALSJAYSHREECHEMICALS132Reporting79JITPLJITPL400Reporting80JK PAPERJK PAPER132Reporting81JSLJSPLJSPL220Reporting83JSPLAJSPLAJSPLA400/220Reporting84KARMANSHABSPTCL132Reporting85KHAGAULBSPTCL220/132Reporting	71	HAZIPUR NEW	BSPTCL	220/132	Not Reporting
73IB TPSIB TPS400/220Reporting74ICCLICCLNot74ICCLI32Reporting75IMFAAIMFAA132Reporting76IndbarathIndbarath400Reporting77JAKKANPURBSPTCL132Reporting78JAYSHREECHEMICALSJAYSHREECHEMICALS132Reporting79JITPLJITPL400Reporting80JK PAPERJSLZ20Reporting81JSLJSPLAJSPLA400/220Reporting83JSPLABSPTCL132Reporting84KARMANSHABSPTCL132Reporting85KHAGAULBSPTCL220/132Reporting	72	HINDALCO	HINDALCO	132	Reporting
74ICCLNot Reporting75IMFAAIMFAA132Reporting76IndbarathIndbarath400Reporting76IndbarathIndbarath400Reporting77JAKKANPURBSPTCL132Reporting78JAYSHREECHEMICALSJAYSHREECHEMICALS132Reporting79JITPLJITPL400Reporting80JK PAPERJSL220Reporting81JSLJSPL220Reporting83JSPLAJSPLA400/220Reporting84KARMANSHABSPTCL132Reporting85KHAGAULBSPTCL220/132Reporting	73	IB TPS	IB TPS	400/220	Reporting
75IMFAAIMFAA132Reporting76IndbarathIndbarath400Reporting76Indbarath400Reporting77JAKKANPURBSPTCL132Reporting78JAYSHREECHEMICALSJAYSHREECHEMICALS132Reporting79JITPLJITPL400Reporting80JK PAPERJK PAPER132Reporting81JSLJSLZ20Reporting83JSPLAJSPLAJSPLA400/220Reporting84KARMANSHABSPTCL132Reporting85KHAGAULRSPTCL220/132Reporting	74	ICCL	ICCL	132	Not Reporting
76Indbarath400Reporting76Indbarath400Reporting77JAKKANPURBSPTCL132Reporting78JAYSHREECHEMICALSJAYSHREECHEMICALS132Reporting79JITPLJITPL400Reporting80JK PAPERJK PAPER132Reporting81JSLSPLJSPL220Reporting83JSPLAJSPLAJSPLA400/220Reporting84KARMANSHABSPTCL132Reporting85KHAGAULBSPTCL220/132Reporting	75	IMFAA	IMFAA	132	Reporting
77JAKKANPURBSPTCLNot77JAKKANPURBSPTCL132Reporting78JAYSHREECHEMICALSJAYSHREECHEMICALS132Reporting79JITPLJITPL400Reporting80JK PAPERJK PAPER132Reporting81JSLSPLJSPL220Reporting83JSPLAJSPLAJSPLA400/220Reporting84KARMANSHABSPTCL132Reporting85KHAGAULBSPTCL220/132Reporting	76	Indbarath	Indbarath	400	Reporting
NotNot78JAYSHREECHEMICALSJAYSHREECHEMICALS132Reporting79JITPLJITPL400Reporting80JK PAPERJK PAPER132Reporting81JSLJSL220Reporting82JSPLJSPL220Reporting83JSPLAJSPLA400/220Reporting84KARMANSHABSPTCL132Reporting85KHAGAULBSPTCL220/132Reporting	77	JAKKANPUR	BSPTCL	132	Not Reporting
79JITPLJITPL400Reporting80JK PAPERJK PAPER132Reporting81JSLJSL220Reporting82JSPLJSPL220Reporting83JSPLAJSPLA400/220Reporting84KARMANSHABSPTCL132Reporting85KHAGAULBSPTCL220/132Reporting	78	JAYSHREECHEMICALS	JAYSHREECHEMICALS	132	Not Reporting
80JK PAPERJK PAPER132Reporting81JSLJSLJSL220Reporting82JSPLJSPL220Reporting83JSPLAJSPLA400/220Reporting84KARMANSHABSPTCL132Reporting85KHAGAULBSPTCL220/132Reporting	79	JITPL	JITPL	400	Reporting
81JSLJSL220Reporting82JSPLJSPL220Reporting83JSPLAJSPLA400/220Reporting84KARMANSHABSPTCL132Reporting85KHAGAULBSPTCL220/132Reporting	80	JK PAPER	JK PAPER	132	Reporting
82JSPLJSPL220Reporting83JSPLAJSPLA400/220Reporting84KARMANSHABSPTCL132Reporting85KHAGAULBSPTCL220/132Reporting	81	JSL	JSL	220	Reporting
83 JSPLA JSPLA 400/220 Reporting 84 KARMANSHA BSPTCL 132 Reporting 85 KHAGAUL BSPTCL 220/132 Reporting	82	JSPL	JSPL	220	Reporting
84 KARMANSHA BSPTCL 132 Reporting 85 KHAGAUL BSPTCL 220/132 Reporting	83	JSPLA	JSPLA	400/220	Reporting
85 KHAGAUL BSPTCI 220/132 Reporting	84	KARMANSHA	RSPTCI	132	Not
	85	KHAGAUL	BSPTCI	220/132	Reporting

S. No	Name/Code of RTU or	Ownershin	Voltage	Status
		ownersnip		Not
86	козні	BSPTCL	132	Reporting
				Not
87	LAKHISARAI	BSPTCL	220/132	Reporting
				Not
88	MIL	MIL	220	Reporting
89	ΜΙΝΑΚΗΙ	MINAKHI	132	Not Reporting
				Not
90	MOTIHARI	BSPTCL	132	Reporting
91	MPL	MPL	400	Reporting
92	MSP JHARSUGUDA	MSP JHARSUGUDA	132	Reporting
				Not
93	MUZAFARPUR	BSPTCL	220/132	Reporting
94	NBVL	NBVL	132	Reporting
				Not
95	OCL_RAJGA	OCL_RAJGA	132	Reporting
		PARADEEP	100	
96	PARADEEP PHOSPHATE	PHOSPHATE	132	Reporting
97	PURNEA	BSPTCL	132	Not Reporting
				Not
98	RAJGIR	BSPTCL	132	Reporting
				Not
99	RAMDAYALU GRID	BSPTCL	132	Reporting
				Not
100	ROHIT FERO	ROHIT FERO	220	Reporting
101	RSP_ROURK	RSP_ROURK	132	Reporting
102	SABOUR	BSPTCL	132	Reporting
4.00			400	Not
103		BSPICE	132	Reporting
104		SIEKLIE	400	Reporting
105		SHTAIVI UKI	132	Reporting
106	SIPARA	BSPTCL	220/132	Not Reporting
107	SITAMARHI	Βςρται	132	Not
107			192	Not
108	SMC , JHARSUGUDA	SMC , JHARSUGUDA	132	Reporting
109	SONE NAGAR	BSPTCL	132	Reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
				Not
110	SULTANGANJ	BSPTCL	132	Reporting
111	TISCO	TISCO	400	Reporting
112	TSIL	TSIL	220	Reporting
113	TTPS	TTPS	220/132	Reporting
114	VEDANTA	VEDANTA	220	Reporting
115	VEDANTA ALLUMI	VEDANTA ALLUMI	132	Reporting
116	VISA STEEL	VISA STEEL	132	Not Reporting
117	ASP	Damodar Valley Corporation	132	Reporting
118	BARHI HPS	Damodar Valley Corporation	132	Reporting
119	BARJO_DVRA	Damodar Valley Corporation	220	Reporting
120	BOKARA A	Damodar Valley Corporation	400/220	Not Reporting
121	BOKARA B	Damodar Valley Corporation	220/132	Reporting
122	BURDWAN	Damodar Valley Corporation	132	Not Reporting
123	CTPS 132	Damodar Valley Corporation	132	Reporting
124	CTPS 220	Damodar Valley Corporation	220	Reporting
125	CTPS B	Damodar Valley Corporation	220	Reporting
126	DSTPS	Damodar Valley Corporation	400	Reporting
127	DURGAPUR	Damodar Valley Corporation	220	Not Reporting
128	HOWRAH	Damodar Valley Corporation	132	Not Reporting
129	JAMSHEDPR	Damodar Valley Corporation	220/132	Not Reporting
130	KALIPAHARI	Damodar Valley Corporation	132	Not Reporting
131	KALYANESWARI	Damodar Valley Corporation	220/132	Reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
132	KODARMA	Damodar Valley Corporation	400/220	Reporting
133	KOLAGHAT	Damodar Valley Corporation	132	Not Reporting
134	KUMARDUBRI	Damodar Valley Corporation	132	Reporting
135	MAITHON	Damodar Valley Corporation	132	Reporting
136	MEJIA	Damodar Valley Corporation	220	Reporting
137	MEJIA B	Damodar Valley Corporation	400	Reporting
138	MOSABANI	Damodar Valley Corporation	132	Not Reporting
139	PANCHAT	Damodar Valley Corporation	132	Reporting
140	PARULIA	Damodar Valley Corporation	220	Reporting
141	PATHERDIH	Damodar Valley Corporation	132	Not Reporting
142	PATRATU	Damodar Valley Corporation	132	Not Reporting
143	Ρυτκι	Damodar Valley Corporation	132	Not Reporting
144	RAGHUNATHPUR	Damodar Valley Corporation	400/220	Reporting
145	RAMGARH	Damodar Valley Corporation	132	Not Reporting
146	WARIA	Damodar Valley Corporation	220/132	Reporting
147	CHANDIL	Jharkhand	220/132	Reporting
148	DEOGHAR	Jharkhand	132	Not Reporting
149	GARHWA	Jharkhand	132	Not Reporting
150	GOELKERA	Jharkhand	132	Not Reporting
151	ΗΑΤΙΑ	Jharkhand	132	Reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
152	HATIA NEW	Jharkhand	220/132	Not Reporting
153	JADUGODA	Jharkhand	132	Not Reporting
154	JAMTARA	Jharkhand	132	Not Reporting
155	KENDPOSI	Jharkhand	132	Not Reporting
156	LALMATIA	Jharkhand	132	Reporting
157	PATRATU	Jharkhand	220/132	Reporting
158	RAJKHASRAWAN	Jharkhand	132	Not Reporting
159	RAMC'RAPUR	Jharkhand	220/132	Not Reporting
160	SUBARNA REKHA	Jharkhand	132	Reporting
161	TENUGHAT	Jharkhand	220	Reporting
162	ROURKELA	Odisha	132	Reporting
163	AKUSINGHA	Odisha	132	Reporting
164	ANGUL	Odisha	132	Reporting
				Not
165	ASKA	Odisha	132	Reporting
166	BALASORE	Odisha	220/132	Reporting
167	BALIMELA	Odisha	220	Reporting
168	BARGARH	Odisha	132	Reporting
169	BARIPADA	Odisha	132	Reporting
170	BARKOT	Odisha	220	Reporting
				Not
171	BERAHAMPUR	Odisha	132	Reporting
172	BHADRAK	Odisha	220/132	Reporting
173	BHANJNAGAR	Odisha	220/132	Reporting
174	BHUBANESWAR	Odisha	132	Not Reporting
175	BIDANASI	Odisha	220/132	Reporting
176	BOINDA	Odisha	132	Reporting
177	BOLANGIR(NEW)	Odisha	220/132	Not Reporting
178	BOLANGIR(OLD)	Odisha	132	Not Reporting
179	BUDHIPADAR	Odisha	220/132	Reporting

S.	Name/Code of RTU or	Oursership	Voltage	Chatura
NO.		Ownership		Status
180	BURLA	Odisha	220/132	Reporting
181	BURLA HPS	Odisha	132	Reporting
182	CHAINPAL	Odisha	132	Reporting
183	CHANDAKA	Odisha	220/132	Reporting
101		Odicha	122	Not
104		Odisha	132	Reporting
105		Odisha	132	Reporting
100		Odisha	132	Reporting
107		Odisha	132	Reporting
188		Odisha	132	Reporting
189	DUBRINEW	Odisha	220	Reporting
190	DUBRIOLD	Odisha	220/132	Reporting
191		Odisha	400/220	Reporting
192	JAJPUR ROAD	Odisha	132	Reporting
193	JAYANAGAR	Odisha	220/132	Reporting
194	JODA	Odisha	220/132	Reporting
				Not
195	KAMAKSHYANAGAR	Odisha	132	Reporting
196	KENDRAPADA	Odisha	132	Reporting
197	KESINGA	Odisha	132	Reporting
198	KHURDA	Odisha	132	Reporting
199	MACHKUND	Odisha	132	Reporting
200	MENDHASAL	Odisha	400/220	Reporting
201	MERAMUNDALI	Odisha	400/220/132	Reporting
				Not
202	NARENDRAPUR	Odisha	220/132	Reporting
203	NAYAGARH	Odisha	220	Reporting
204		Odisha	220/122	Not
204		Odisha	122	Reporting
203	PUNI	Ouisila	152	Neporting
206	RAIRANGAPUR	Odisha	132	NOT Reporting
			1	Not
207	RAJGANGPUR	Odisha	132	Reporting
208	RAYAGADA	Odisha	132	Reporting
209	RENGALI S/S	Odisha	220	Reporting
210	RENGALI(PH)	Odisha	220	Reporting
211	SAMBALPUR	Odisha	132	Reporting
212	SIJUA	Odisha	132	Reporting

S.	Name/Code of RTU or	Quant and him	Voltage	Chature
NO.	SAS	Ownersnip	level	Status
213		Odisha	132	Reporting
214		Odisha	220/132	Reporting
215		Odisha	220/132	Reporting
216	UPPER KOLKAB	Odisha	220	Reporting
217	ADISASAPTAGRAM	West Bengal	132	Not Reporting
				Not
218	ALIDWAR	West Bengal	132	Reporting
219	ARAMBAGH	West Bengal	400/220/132	Reporting
				Not
220	ASANSOLE	West Bengal	220/132	Reporting
221	ASHOK NAGAR	West Bengal	132	Reporting
222	BAKRESWAR	West Bengal	400/220	Reporting
223	BANTALA	West Bengal	220/132/33	Reporting
				Not
224	BARASAT	West Bengal	132	Reporting
225	BARJR	West Bengal	132/33	Not Reporting
226	BGHTI	West Bengal	132/33	Not Reporting
227	BIRPARA	West Bengal	132/66	Not Reporting
228	BISHNUPUR	West Bengal	132	Not Reporting
229	BONGAON	West Bengal	132	Reporting
230	BTPS	West Bengal	132	Reporting
231	CHALSA	West Bengal	132/66	Not Reporting
232	DEBOGRAM	West Bengal	132	Not Reporting
233	DHARAMPUR	West Bengal	132	Reporting
234	DOMJUR	West Bengal	220/132	Not Reporting
235	DPL	West Bengal	220/132	Not Reporting
236	DURGAPUR	West Bengal	220/132	Not Reporting
237	DURGAPUR(400KV)	West Bengal	400/220	Not Reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
				Not
238	GANGARAMPUR	West Bengal	132	Reporting
				Not
239	GOKARNA	West Bengal	220/132/66	Reporting
240	HALDIA NEW	West Bengal	220/132	Reporting
241	HALDIA OLD	West Bengal	132	Reporting
242	HOWRAH	West Bengal	220/132	Reporting
243	JEERAT	West Bengal	400/220/132	Reporting
				Not
244	JOKA	West Bengal	132	Reporting
245	KASBA	West Bengal	220/132	Reporting
246	KHARAGPUR	West Bengal	132	Reporting
				Not
247	KHARAGPUR(400KV)	West Bengal	400/220/132	Reporting
248	KOLAGHAT	West Bengal	132	Reporting
249	KOLGHAT TP	West Bengal	400/220/132	Reporting
				Not
250	KRISHNA NAGAR	West Bengal	220/132/33	Reporting
251	LAKSHMIKANTPUR	West Bengal	220/132	Reporting
252	LILUA	West Bengal	132	Reporting
253	MALDA	West Bengal	132	Reporting
254	MIDNAPORE	West Bengal	220/132	Reporting
255	NBU	West Bengal	132	Reporting
256	NEW BISHNUPUR	West Bengal	220/132/33	Reporting
257	NJP	West Bengal	220/132	Reporting
258	PPSP	West Bengal	400	Reporting
				Not
259	PURULIA	West Bengal	132	Reporting
				Not
260	RAIGANJ	West Bengal	132	Reporting
261	RAJARHUT	West Bengal	220/132/33	Reporting
262	RAMAM	West Bengal	132	Reporting
263	RISHRA	West Bengal	220/132	Reporting
				Not
264	SAGARDIGHI	West Bengal	400/220	Reporting
				Not
265	SAGARDIGHI(400)	West Bengal	400/220	Reporting
266	SALTLAKE	West Bengal	132	Reporting
267	SANTHALDHI	West Bengal	220/132	Reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage	Status
		Children		Not
268	SATGACHIYA	West Bengal	220/132	Reporting
				Not
269	SIANT	West Bengal	132	Reporting
270	SUBHASGRAM	West Bengal	220/132/33	Reporting
271	TARAKESWAR	West Bengal	132	Reporting
				Not
272	TEESTA ST-1	West Bengal	132	Reporting
				Not
273	TEESTA ST-2	West Bengal	132	Reporting
				Not
274	TEESTA ST-3	West Bengal	132	Reporting
				Not
275	TITAGARH	West Bengal	132	Reporting

List of RTUs in Western Region

S.			Voltage	
No.	Name/Code of RTU or SAS	Ownership	level	Status
1	Aurangabad PG	PGCIL	765/400/220	Reporting
2	Bachau	PGCIL	400/220	Reporting
3	Bhadrawati	PGCIL	400/220	Reporting
4	Bhatapara	PGCIL	400/220	Reporting
5	Bina PG	PGCIL	765/400/220	Reporting
6	Boisar	PGCIL	400/220	Reporting
7	Daman	PGCIL	400/220	Reporting
8	Damoh	PGCIL	400/220	Reporting
9	Dehgam	PGCIL	400/220	Reporting
10	Dharamjaygarh	PGCIL	765/400	Reporting
11	Essar Vadinar	PGCIL	400	Reporting
12	Gandhar	NTPC	400/220	Reporting
13	Gwalior	PGCIL	765/400/220	Reporting
14	Itarsi	PGCIL	400/220	Reporting
15	Jabalpur Pooling	PGCIL	765/400	Reporting
16	Kakrapar	NPCIL	220	Reporting
17	Kala	PGCIL	400/220	Reporting
18	Kawas	NTPC	220	Reporting
19	Khandwa	PGCIL	400/220	Reporting
20	Korba	NTPC	400/220	Reporting
21	Mapusa	PGCIL	400/220	Reporting
22	Mauda	NTPC	400	Reporting
23	Navsari	PGCIL	400/220	Reporting

S.			Voltage	
No.	Name/Code of RTU or SAS	Ownership	level	Status
24	Parli PG	PGCIL	400/220	Reporting
25	Pirana	PGCIL	400/220	Reporting
26	Pune	PGCIL	400/220	Reporting
27	Raigarh	PGCIL	400/220	Reporting
28	Raigarh 765	PGCIL	765/400	Reporting
29	Raigarh 765	PGCIL	765/400	Reporting
30	Raipur	PGCIL	400/220	Reporting
31	Raipur Durg	PGCIL	765/400	Reporting
32	Rajgarh	PGCIL	400/220	Reporting
33	Sasan	NTPC	765/400	Reporting
34	Satna	PGCIL	765/400/220	Reporting
35	Seoni	PGCIL	765/400/220	Reporting
36	Sipat	NTPC	765/400	Reporting
37	Solapur PG	PGCIL	765/400/220	Reporting
38	Sujalpur	PGCIL	400/220	Reporting
39	Tarapur	NPCIL	400/220	Reporting
40	Vapi	PGCIL	400/220	Reporting
41	Vindhyachal	NTPC	765/400/	Reporting
42	Wardha	PGCIL	765/400/220	Reporting
43	ACBIL	ACBIL	400/132	Reporting
44	BALCO	BALCO	400/220	Reporting
45	BDTCL Bhopal	BDTCL	765/400	Reporting
46	BDTCL Dhule	BDTCL	765/400	Reporting
47	CGPL	CGPL	400	Reporting
48	DB Power	Diligent Power	400	Reporting
49	Dgen	Torrent	400/220	Reporting
50	Dhariwal PG	Dhariwal	400	Reporting
51	Essar Hazira	Essar	400/220	Reporting
52	Essar Mahan	Essar	400/220	Reporting
53	GMR EMCO	GMR	400	Reporting
54	GMR Raipur	GMR	400	Reporting
55	Jindal	JPL	400	Reporting
56	Jindal Tamnar	JPL	400	Reporting
57	JP Nigri	Jaypee	400	Reporting
58	KSK	KSK	400	Reporting
59	KWPCL	KWPCL	400/220	Reporting
60	LANCO	LANCO	400	Reporting
61	MB Power	Moser Baer	400	Reporting
62	MCPL	MCPL	400	Reporting
63	RGPPL	RGPPL	400	Reporting
64	RKM	RKM	400	Reporting
65	Sugen	Torrent	400	Reporting
66	Vandana Vidyut	VVNL	400	Reporting
67	BARSOOR	Chhattisgarh	220	Reporting

S.			Voltage	
No.	Name/Code of RTU or SAS	Ownership	level	Status
68	BHATAPARA	Chhattisgarh	220	Reporting
69	BHILAI	Chhattisgarh	400/220	Reporting
70	BILASPUR	Chhattisgarh	220	Reporting
71	СННІВВІ	Chhattisgarh	220	Not
/1		Cimattisgarii		Not
72	DHAMDHA	Chhattisgarh	132	Reporting
73	DONGARGARH	Chhattisgarh	132	Reporting
74	HASDEO BANGO	Chhattisgarh	132	Reporting
75	KORBA EAST	Chhattisgarh	220/132	Reporting
76	KORBA WEST	Chhattisgarh	400	Reporting
77	KORBA WEST EXT	Chhattisgarh	400	Reporting
78	MARWA TPS	Chhattisgarh	400	Reporting
			220	Not
79	PENDRA	Chhattisgarh	220	Reporting
80	RAIGARH	Chhattisgarh	220	Reporting
			400/220	Not
81	RAITA	Chhattisgarh	100,220	Reporting
82	SARAIPALLI	Chhattisgarh	220	Reporting
83	URLA	Chhattisgarh	220	Reporting
0.4			220	Not
04	MAGARWADA	00	220	Not
85	КНАРОЦ	рин	220	Reporting
05		DNIT	220	Not
86	KHARADPADA	DNH	220	Reporting
		2		Not
87	AMONA	Goa	220	Reporting
				Not
88	CUNCOLIM	Goa	220	Reporting
		Cas	110	Not
89	KADAWBA	GUa	110	Not
90	ΡΟΝΠΑ	Goa	220	Reporting
		000		Not
91	TIVIM	Goa	220	Reporting
				Not
92	VERNA	Goa	110	Reporting
			222	Not
93		Goa	220	Reporting
94	ACHCHHALIA	Gujarat	220	Reporting
95		Gujarat	400/220	Reporting
96		Gujarat	220	Reporting
97	AMRELI	Gujarat	400/220	Reporting

S.			Voltage	
No.	Name/Code of RTU or SAS	Ownership	level	Status
98	ANJAR	Gujarat	220	Reporting
99	ASOJ	Gujarat	400/220	Reporting
100	BHAT	Gujarat	220	Reporting
				Not
101	BHATIA	Gujarat	220	Reporting
102	BHILAD	Gujarat	220	Reporting
103	CHANDRAPURA	Gujarat	220	Reporting
104	CHHATRAL	Gujarat	220	Reporting
105	CHITROD	Gujarat	220	Reporting
106	CHORANIA	Gujarat	400/220	Reporting
107	DEODAR	Gujarat	220	Reporting
108	DHANGADHRA	Gujarat	220	Reporting
109	DHANSURA	Gujarat	220	Reporting
110	ESSAR POWER	Gujarat	400/220	Reporting
111	GANDHINAGAR	Gujarat	220	Reporting
112	GAVASAD	Gujarat	220	Reporting
113	GODHARA	Gujarat	220	Reporting
114	GONDAL	Gujarat	220	Reporting
115	GPEC	Gujarat	220	Reporting
116	GSEG HAZIRA	Gujarat	220	Reporting
117	HADALA	Gujarat	400/220	Reporting
118	HALDARVA	Gujarat	220	Reporting
119	ICHCHHAPUR	Gujarat	220	Reporting
120	JAGHADIA	Gujarat	220	Reporting
121	JAMANVAD	Gujarat	220	Reporting
122	JAMBUVA	Gujarat	220	Reporting
123	JAMLA	Gujarat	220	Reporting
124	JAMNAGAR	Gujarat	220	Reporting
125	JETPUR	Gujarat	400/220	Reporting
126	KADANA	Gujarat	220	Reporting
127	KANSARI	Gujarat	400/220	Reporting
128	KAPADWANJ	Gujarat	220	Reporting
129	KARAMSAD	Gujarat	220	Reporting
130	KASOR	Gujarat	400/220	Reporting
131	KESHOD	Gujarat	220	Reporting
132	KHANPUR	Gujarat	220	Reporting
133	KIM	Gujarat	220	Reporting
134	KOSAMBA	Gujarat	400/220	Reporting
135	LIMBDI	Gujarat	220	Reporting
136	MANSAR	Gujarat	400/220	Reporting
137	MEHSANA	Gujarat	220	Reporting
				Not
138	MOKHA	Gujarat	220	Reporting
139	MORBI	Gujarat	220	Reporting

S.			Voltage	
No.	Name/Code of RTU or SAS	Ownership	level	Status
140	NAKHATRANA	Gujarat	220	Reporting
141	NANO	Gujarat	220	Reporting
142	NAVSARI	Gujarat	220	Reporting
143	OTHA	Gujarat	220	Reporting
144	PANADHR	Gujarat	220	Reporting
145	RAJKOT	Gujarat	220	Reporting
146	RANASAN	Gujarat	220	Reporting
147	RANAVAV	Gujarat	220	Reporting
148	RANCHODPURA	Gujarat	400	Reporting
149	SACHIN	Gujarat	220	Reporting
150	SALEJADA	Gujarat	220	Reporting
151	SAMI	Gujarat	400	Reporting
152	SANKHARI	Gujarat	220	Reporting
153	SARDAR SAROVAR	Gujarat	400/220	Reporting
154	SAVARKUNDLA	Gujarat	220	Reporting
155	SLPP	Gujarat	220	Reporting
156	SOJA	Gujarat	400/220	Reporting
157	TIMBDI	Gujarat	220	Reporting
158	UKAI(THERMAL)	Gujarat	400/220	Reporting
159	UTRAN	Gujarat	220	Reporting
160	VAPI	Gujarat	220	Reporting
161	VARSANA	Gujarat	400	Reporting
162	VARTEJ	Gujarat	220	Reporting
163	VAV	Gujarat	220	Reporting
164	VIJAPUR	Gujarat	220	Reporting
165	VIRAMGAM	Gujarat	220	Reporting
166	WANAKBORI	Gujarat	400/220	Reporting
		Madhya		
167	AMARKANTAK	Pradesh	220	Reporting
		Madhya		
168	ANUPUR	Pradesh	220	Reporting
		Madhya		
169	ASTHA	Pradesh	132	Reporting
		Madhya		
170	BADOD	Pradesh	220	Reporting
		Madhya		
171	BAIRAGARH	Pradesh	220	Reporting
		Madhya		
172	BALAGHAT	Pradesh	132	Reporting
		Madhya		
173	BANMORE	Pradesh	132	Reporting
		Madhya	000/100	
174	BANSAGAR-	Pradesh	220/132	Reporting
175	BANSAGAR II	Madhya	132	Reporting

S.			Voltage	
No.	Name/Code of RTU or SAS	Ownership	level	Status
		Pradesh		
		Madhya		
176	BARGI	Pradesh	132	Reporting
		Madhya		
177	BARWAHA	Pradesh	220	Reporting
		Madhya		
178	BHOPAL	Pradesh	400/220	Reporting
		Madhya		
179	BINA	Pradesh	400/220	Reporting
		Madhya		
180	BORGAON	Pradesh	132	Reporting
		Madhya		
181	CHHEGAON	Pradesh	400/220	Reporting
		Madhya		Not
182	CHICHLI	Pradesh	220	Reporting
		Madhya		
183	CHINDWARA	Pradesh	132	Reporting
		Madhya		
184	DALODA	Pradesh	220	Reporting
		Madhya		
185	DAMOH	Pradesh	220	Reporting
100	DEMAG	Madhya	220/422	Describer
186	DEWAS	Pradesn	220/132	Reporting
107		Madnya	220	NOT
187	DHAR	Pradesn	220	Reporting
100		Iviadnya	122	Deperting
188	GANDHISAGAR	Pradesn	132	керогипе
100	CLINA	Dradoch	220	Poporting
103	GUNA	Madhya	220	Reporting
100	GWALLOR	Bradach	220	Poporting
190	GWALIOK	Madhya	220	Reporting
101	ΗΛΝΟΙΛ	Pradesh	220	Reporting
151		Madbya	220	Reporting
192	INDORF	Pradesh	400	Reporting
152		Madhya		Reporting
193	INDORF(CHL)	Pradesh	132	Reporting
		Madhya	102	
194	INDOREEAST	Pradesh	220	Reporting
		Madhva		
195	INDORENZ	Pradesh	220	Reporting
		Madhya		
196	ISP	Pradesh	400	Reporting
197	ITARSI	Madhva	220	Reporting
	1			

S.			Voltage	
No.	Name/Code of RTU or SAS	Ownership	level	Status
		Pradesh		
		Madhya		
198	JABALPUR	Pradesh	400/220	Reporting
		Madhya		
199	JULWANIA	Pradesh	400/220	Reporting
		Madhya		
200	KATNI	Pradesh	400/220	Reporting
		Madhya		
201	MALANPUR	Pradesh	220	Reporting
		Madhya		
202	MARIKHEDA HPS	Pradesh	132	Reporting
		Madhya		
203	MEHGAON	Pradesh	220	Reporting
		Madhya	100	Descrit
204	MUKWA	Pradesh	132	Reporting
205	NACDA	Madhya	400 (220	Describer
205	NAGDA	Pradesn	400/220	Reporting
200		Madhya	122	Deventions
206	NARSINGPUR	Pradesn	132	Reporting
207	NEENALICH	Madhya	220	Deventions
207	NEEMIUCH	Pradesn	220	керогипд
200		Bradosh	220	Bonorting
208	NEPANAGAR	Madbya	220	Reporting
200		Pradosh	220	Peporting
205	OWRARESTWAR	Madhya	220	Not
210	PANAGAR	Pradesh	220	Reporting
210		Madhya	220	Reporting
211	PANDURNA	Pradesh	220	Reporting
		Madhva		
212	PENCH	Pradesh	132	Reporting
		Madhya		
213	PIPARIYA	Pradesh	132	Reporting
		Madhya		
214	PITAMPURA	Pradesh	400/220	Reporting
		Madhya		
215	RAJGARH	Pradesh	220	Reporting
		Madhya		
216	RAJGARH(BEORA)	Pradesh	220	Reporting
		Madhya		
217	RAJGHAT HPS	Pradesh	132	Reporting
		Madhya		
218	RATLAM	Pradesh	220	Reporting
219	SARNI	Madhya	220	Reporting

S.			Voltage	
No.	Name/Code of RTU or SAS	Ownership	level	Status
		Pradesh		
		Madhya		
220	SATNA	Pradesh	220/132	Reporting
		Madhya		
221	SATPURA	Pradesh	400	Reporting
		Madhya		
222	SEONI	Pradesh	132	Reporting
		Madhya		
223	SGTPS	Pradesh	220	Reporting
224		Madhya	122	Deventione
224	SHAJAPUR	Pradesn	132	Reporting
225		Iviadnya	220	Depenting
225	SHUJALPUR	Pradesn	220	керогипд
226	SINGHAIL	Dradesh	400	Reporting
220	SINGHAJI	Madbya	400	Reporting
227	TIKAMGARH	Pradesh	220	Reporting
~~/		Madhya	220	Reporting
228		Pradesh	220	Reporting
229	AARFY	Maharashtra	220	Reporting
230	AHMEDNAGAR	Maharashtra	220	Reporting
231	ΑΚΟΙΑ	Maharashtra	400	Reporting
232		Maharashtra	765	Reporting
233	AKOLA1	Maharashtra	220	Reporting
234	AKOLA2	Maharashtra	765	Reporting
235	ALEPHENTA	Maharashtra	220	Reporting
236	AMALNER	Maharashtra	220	Reporting
237	AMBAZARY	Maharashtra	220	Reporting
238	AMRAVATI	Maharashtra	220	Reporting
			220	Not
239	ΑΡΤΑ	Maharashtra	220	Reporting
240	AURANGABAD	Maharashtra	400/220	Reporting
241	AURANGABAD3	Maharashtra	220	Reporting
242	BABLESHWAR2	Maharashtra	400	Reporting
243	ВАСКВАҮ	Maharashtra	220	Reporting
244	BADNERA	Maharashtra	220	Reporting
245	BARAMATI	Maharashtra	220	Reporting
246	BEED	Maharashtra	220	Reporting
247	BHANDARDARA	Maharashtra	132	Reporting
248	BHANDARDARA	Maharashtra	220	Reporting
			220	Not
249	BHIRA TAILRACE	Maharashtra		Reporting
250	BHUGAON	Maharashtra	220	Reporting
251	BHUSAWAL1	Maharashtra	220	Reporting

S.			Voltage			
No.	Name/Code of RTU or SAS	Ownership	level	Status		
252	BHUSAWAL2	Maharashtra	132	Reporting		
253	BHUSAWAL3	Maharashtra	400/220	Reporting		
254	BOISAR	Maharashtra	220	Reporting		
				Not		
255	BOMBAYDYENIG	Maharashtra	220	Reporting		
256	BORIVLI	Maharashtra	220	Reporting		
257	BOSARY	Maharashtra	220	Reporting		
				Not		
258	BUTIBORI	Maharashtra	220	Reporting		
259	CARNAC	Maharashtra	220	Reporting		
260	CHAKAN	Maharashtra	400	Reporting		
261	CHALISGAON	Maharashtra	220	Reporting		
262	CHANDRAPUR	Maharashtra	220	Reporting		
263	CHIKHALI	Maharashtra	220	Reporting		
264	CHITEGAON	Maharashtra	220	Reporting		
				Not		
265	COLORCHEM	Maharashtra	220	Reporting		
266	DABHOL	Maharashtra	220	Reporting		
267	DAHANU	Maharashtra	220	Reporting		
				Not		
268	DEEPNAGAR	Maharashtra	400	Reporting		
269	DHAMANGAON	Maharashtra	220	Reporting		
270	DHARAVI	Maharashtra	220	Reporting		
				Not		
271	DHARIWAL	Maharashtra	400	Reporting		
272	DHULE	Maharashtra	400/220	Reporting		
273	Dhule1	Maharashtra	220	Reporting		
274	Dombivali	Maharashtra	220	Reporting		
				Not		
275	Dondaicha	Maharashtra	220	Reporting		
276	Gadchandur	Maharashtra	220	Reporting		
				Not		
277	Ghatghar	Maharashtra	220	Reporting		
				Not		
278	Ghatnandre	Maharashtra	220	Reporting		
279	GHODBUNDER	Maharashtra	220	Reporting		
				Not		
280	Halkarni	Maharashtra	220	Reporting		
			222	Not		
281	Harangul	Maharashtra	220	Reporting		
			400	Not		
282	Harsool	Maharashtra	132	Reporting		
283	Hinjewadi	Maharashtra	220	Reporting		
284	IB AMRAWATI	Maharashtra	400	Reporting		

S.		Voltage			
No.	Name/Code of RTU or SAS	Ownership	level	Status	
				Not	
285	IB NASHIK	Maharashtra	400	Reporting	
286	Ichalkaranji	Maharashtra	220	Reporting	
287	JAIGAD	Maharashtra	400	Reporting	
				Not	
288	Jalana	Maharashtra	220	Reporting	
-				Not	
289	Jamde	Maharashtra	220	Reporting	
				Not	
290	JEJURI	Maharashtra	400	Reporting	
291	Jejuri1	Maharashtra	220	Reporting	
292	JEJURY	Maharashtra	220	Reporting	
293	Jeur	Maharashtra	220	Reporting	
				Not	
294	KALAMSAR	Maharashtra	220	Reporting	
				Not	
295	KALWA1	Maharashtra	220	Reporting	
296	KALWA2	Maharashtra	400/220	Reporting	
297	KALWA2	Maharashtra	220	Reporting	
298	Kamba	Maharashtra	220	Reporting	
299	KANHAN	Maharashtra	220	Reporting	
300	KARAD1	Maharashtra	220	Reporting	
301	KARGAR	Maharashtra	400	Reporting	
				Not	
302	Kawalewada	Maharashtra	220	Reporting	
303	КДРН	Maharashtra	220	Reporting	
				Not	
304	KHAPARKHEDA2	Maharashtra	400/220	Reporting	
305	Kharepatan	Maharashtra	220	Reporting	
306	KOLHAPUR2	Maharashtra	400	Reporting	
307	KOLHAPUR3	Maharashtra	220	Reporting	
				Not	
308	Kolshet	Maharashtra	220	Reporting	
309	KORADI	Maharashtra	400	Reporting	
310	KORADI ADANI	Maharashtra	765	Reporting	
311	KORADY	Maharashtra	220	Reporting	
				Not	
312	KOYN1N2	Maharashtra	400	Reporting	
313	KOYNA	Maharashtra	220	Reporting	
				Not	
314	KOYNA3	Maharashtra	400	Reporting	
315	KOYNAN	Maharashtra	220	Reporting	
				Not	
316	KUNDALGAON	Maharashtra	220	Reporting	

S.		Voltage				
No.	Name/Code of RTU or SAS	Ownership	level	Status		
317	Kurkumbh	Maharashtra	220	Reporting		
				Not		
318	Latur	Maharashtra	132	Reporting		
319	LONIKHAND	Maharashtra	400	Reporting		
				Not		
320	LONIKHAND2	Maharashtra	400	Reporting		
				Not		
321	Mahad	Maharashtra	220	Reporting		
322	Mahape	Maharashtra	220	Reporting		
323	Malegaon	Maharashtra	220	Reporting		
				Not		
324	Malharpeth	Maharashtra	220	Reporting		
325	Malinagar	Maharashtra	220	Reporting		
326	Malkapur	Maharashtra	132	Reporting		
				Not		
327	Manmad	Maharashtra	132	Reporting		
328	MIRAJ	Maharashtra	220	Reporting		
329	MULUND	Maharashtra	220	Reporting		
				Not		
330	Mumewadi	Maharashtra	220	Reporting		
331	Murud	Maharashtra	220	Reporting		
				Not		
332	NAGOTHANE	Maharashtra	400	Reporting		
333	NANDED	Maharashtra	220	Reporting		
				Not		
334	Nandurbar	Maharashtra	132	Reporting		
				Not		
335	NASIK	Maharashtra	220	Reporting		
336	NERUL	Maharashtra	220	Reporting		
337	Osmanabad	Maharashtra	220	Reporting		
338	Pachora	Maharashtra	132	Reporting		
339	PADGHE	Maharashtra	400	Reporting		
340	PADGHE	Maharashtra	220	Reporting		
				Not		
341	Paithan	Maharashtra	132	Reporting		
342	Pandharpur	Maharashtra	220	Reporting		
				Not		
343	PARAS	Maharashtra	220	Reporting		
344	Paras Extn	Maharashtra	220	Reporting		
345	PARBHANI	Maharashtra	132	Reporting		
346	PARLY1	Maharashtra	220	Reporting		
347	PARLY2	Maharashtra	400/220	Reporting		
348	Parvati	Maharashtra	220	Reporting		
349	Pathardi	Maharashtra	132	Not		

S.		Voltage			
No.	Name/Code of RTU or SAS	Ownership	level	Status	
				Reporting	
350	Peth	Maharashtra	220	Reporting	
351	Phursungi	Maharashtra	220	Reporting	
				Not	
352	Purti	Maharashtra	220	Reporting	
				Not	
353	PUSAD	Maharashtra	220	Reporting	
354	Ranjangaon	Maharashtra	220	Reporting	
355	Raymonds	Maharashtra	220	Reporting	
				Not	
356	Sahada	Maharashtra	220	Reporting	
357	Sakari	Maharashtra	132	Reporting	
358	SALSET	Maharashtra	220	Reporting	
359	Satana	Maharashtra	220	Reporting	
360	SATARA	Maharashtra	220	Reporting	
			220	Not	
361	Sawantwadi	Maharashtra	220	Reporting	
362	SOLAPUR	Maharashtra	400/220	Reporting	
363	SOLAPUR3	Maharashtra	220	Reporting	
364	Supa	Maharashtra	132	Reporting	
265	T (1, 1)	N 4 a b a sta a b t sta	220	Not	
365		Maharashtra	220	Reporting	
366	TAPTITANDA	Ivianarashtra	400	Reporting	
267	Tomahar	Maharashtra	220	NOT	
307		Maharashtra	220	Reporting	
300	THEOR	IVIdi idi dSi ili d	220	Not	
260		Maharashtra	220	Reporting	
305		Maharashtra	765/400	Reporting	
370	TROMBAY	Maharashtra	220	Reporting	
372	TROMBAY	Maharashtra	220	Reporting	
373	LIBAN	Maharashtra	220	Reporting	
374	Urse	Maharashtra	220	Reporting	
0/4		Wanardonera	220	Not	
375	VAITARNA	Maharashtra	220	Reporting	
				Not	
376	Valve	Maharashtra	220	Reporting	
_			_	Not	
377	Vankuswadi	Maharashtra	220	Reporting	
378	VERSOVA	Maharashtra	220	Reporting	
				Not	
379	VITA	Maharashtra	220	Reporting	
380	Wada	Maharashtra	220	Reporting	
381	WARDHA	Maharashtra	220	Reporting	

S.			Voltage	
No.	Name/Code of RTU or SAS	Ownership	level	Status
				Not
382	WARORA	Maharashtra	400	Reporting
				Not
383	Yeldari	Maharashtra	132	Reporting

List of RTUs in Southern Region

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
1	Arasur 400	Central Sector	400	Reporting
2	Bhadrawati 400 (WR Station)	Central Sector	400	Reporting
3	BIDADI SAS	Central Sector	400	Reporting
4	Chinakampally 400	Central Sector	400	Reporting
5	Coastal Energy	Central Sector	400	Reporting
6	Gazuwaka 400	Central Sector	400	Reporting
7	Ghanapur 400	Central Sector	400	Reporting
8	Gooty 400	Central Sector	400	Reporting
9	Hassan 400	Central Sector	400	Reporting
10	Hiriyur 400	Central Sector	400	Reporting
11	Hosur 400	Central Sector	400	Reporting
12	IL&FS generating station	Central Sector	400	Reporting
13	Kaiga APP 220	Central Sector	220	Reporting
14	Kalivantapattu 400	Central Sector	400	Reporting
15	Kalpakkam 230	Central Sector	230	Reporting
16	Karaikudi	Central Sector	400	Reporting
17	Kayamkulam 220	Central Sector	220	Reporting
18	Khammam 400	Central Sector	400	Reporting
19	Kochi	Central Sector	400	Reporting
20	Kolar AC Station	Central Sector	400	Reporting
21	Kolar HVDC RCI	Central Sector	400	Reporting
22	Kudankulam 400	Central Sector	400	Reporting
23	Kurnool765	Central Sector	765	Reporting
24	Lanco IPP	Central Sector	400	Reporting
25	Madurai 400	Central Sector	400	Reporting
26	Meenakshi Genr. Stn.	Central Sector	400	Reporting
27	Munirabad 400	Central Sector	400	Reporting
28	Mysore 400 RCI	Central Sector	400	Reporting
29	Narendra 400	Central Sector	400	Reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
30	Nellore 400	Central Sector	400	Reporting
31	Nellore Pooling Station	Central Sector	400	Reporting
32	Nellore SAS	Central Sector	400	Reporting
33	Nelmangala	Central Sector	400	Reporting
34	Neyveli TS2 Exp	Central Sector	400	Reporting
35	Neyveli TS-I Extn.	Central Sector	400	Reporting
36	Neyveli TS-II	Central Sector	400	Reporting
37	NTPL	Central Sector	400	Reporting
38	Palakkad 400	Central Sector	400	Reporting
39	Puducherry 400 S/s	Central Sector	400	Reporting
40	Pugalur	Central Sector	400	Reporting
41	Raichur765	Central Sector	765	Reporting
42	Ramagundam 400	Central Sector	400	Reporting
43	Salem 400	Central Sector	400	Reporting
44	Simhadri Stg 2	Central Sector	400	Reporting
45	Simhapuri genr. Stn.	Central Sector	400	Reporting
46	Somanahalli 400	Central Sector	400	Reporting
47	Sriperumbudur 400	Central Sector	400	Reporting
48	Talcher HVDC RCI	Central Sector	400	Reporting
49	Tallapally 400	Central Sector	400	Reporting
50	Thermal PowerTech (TPCIL)	Central Sector	400	Reporting
51	Thiruvalam 765	Central Sector	765	Reporting
52	Tirunelveli 400	Central Sector	400	Reporting
53	Trichur North 400	Central Sector	400	Reporting
54	Trichy 400	Central Sector	400	Reporting
55	Trivandrum 400	Central Sector	400	Reporting
56	Tutikorin Pooling Station	Central Sector	400	Reporting
57	Udumalpet 400	Central Sector	400	Reporting
58	Vallur generating station	Central Sector	400	Reporting
59	Vijayawada 400	Central Sector	400	Reporting
60	Warangal	Central Sector	400	Reporting
61	Yelankha 400 S/s	Central Sector	400	Reporting
	A.P. Carbides	Andhra		
62		Pradesh	220	Reporting
62	Ananthapur	Andhra	77 0	Penarting
05		Andhra	220	Neporting
64	Anrak	Pradesh	220	Reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
	Bandlaguda 122	Andhra		
65		Pradesh	132	Reporting
	Bhimadole	Andhra		
66		Pradesh	220	Reporting
	Bhimgal	Andhra		
67		Pradesh	220	Reporting
	Bhongir	Andhra		
68		Pradesh	220	Reporting
	Bilakalabudur	Andhra		_
69		Pradesh	220	Reporting
	Bommur	Andhra		
/0		Pradesh	220	Reporting
	BSES	Andhra	220	
/1		Pradesh	220	Reporting
70	BSES	Andhra	220	
/2		Pradesh	220	Reporting
70	CH Gutta	Andnra	220	Denerting
/3		Pradesn	220	Reporting
74	Chellakurthy	Anunra	220	Departing
74		Andhra	220	Reporting
75	Chilakallu	Bradach	220	Poporting
75		Andhra	220	Reporting
76	Chinakampalli	Pradesh	220	Reporting
/0		Andhra	220	Reporting
77	Chitoor 220	Pradesh	220	Reporting
		Andhra	220	Reporting
78	Chittoor 400	Pradesh	400	Reporting
		Andhra		
79	Cuddapah 220	Pradesh	220	Reporting
		Andhra		
80	Dairy Farm 220	Pradesh	220	Reporting
		Andhra		
81	Dhone SWS	Pradesh	220	Reporting
	Diskus III. 220	Andhra		
82		Pradesh	220	Reporting
	Ditchpalli 400	Andhra		-
83		Pradesh	400	Reporting
	Durshed	Andhra		
84		Pradesh	220	Reporting
	Fmul	Andhra		
85		Pradesh	220	Reporting
	Frragada	Andhra		
86	21105000	Pradesh	132	Reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
	Cashihawli	Andhra		
87	Gachibowii	Pradesh	220	Reporting
	Caiwal	Andhra		
88	Gajwei	Pradesh	400	Reporting
		Andhra		
89	Gandikota 132kV	Pradesh	132	Reporting
	Garividi	Andhra		
90	Garria	Pradesh	200	Reporting
	Gazuwaka	Andhra		
91	Guzuwuku	Pradesh	220	Reporting
	Ghanapur	Andhra		
92		Pradesh	220	Reporting
		Andhra		
93	Girija 220kV	Pradesh	220	Reporting
	GMR	Andhra		
94		Pradesh	400	Reporting
	GMR Barge	Andhra		
95		Pradesh	220	Reporting
	Gooty 220	Andhra		
96	,	Pradesh	220	Reporting
	Gooty SWS	Andhra		
97	,	Pradesh	220	Reporting
00	GOUTAMI	Andhra	400	Denentine
98		Pradesh	400	Reporting
00	Gowtami	Andnra	400	Donortino
99		Aradesh	400	Reporting
100		Andhra	220	Doporting
100	GODIWADA	Andhra	220	Reporting
101	Gudiwada	Bradesh	220	Peparting
101		Andhra	220	Reporting
102	Gunadala	Pradesh	220	Reporting
102		Andhra	220	Reporting
103	Gunrock 132	Pradesh	132	Reporting
105		Andhra	152	Reporting
104	GVK400	Pradesh	400	Reporting
		Andhra		
105	GVK-II	Pradesh	400	Reporting
		Andhra		1 0
106	Hampi PH	Pradesh	132	Reporting
		Andhra		
107	Hetero 132kV	Pradesh	132	Reporting
		Andhra		
108		Pradesh	220	Reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
	Hindupur	Andhra		
109	ппаара	Pradesh	220	Reporting
	lagitial	Andhra		
110	Jagitiai	Pradesh	220	Reporting
		Andhra		
111	Jagityal	Pradesh	220	Reporting
	leegurupadu PH	Andhra		
112		Pradesh	220	Reporting
		Andhra		
113	JP Cements 132kV	Pradesh	132	Reporting
	lubilee Hills	Andhra		
114		Pradesh	132	Reporting
	Jurala 220	Andhra		
115		Pradesh	220	Reporting
	K.Kota	Andhra		
116		Pradesh	220	Reporting
	Kakativa Thermal	Andhra		
117		Pradesh	400	Reporting
	Kakinada SS	Andhra		
118		Pradesh	220	Reporting
	Kalapakka	Andhra		
119		Pradesh	400	Reporting
	Kalikiri	Andhra		
120		Pradesh	220	Reporting
	Kalwakurthy	Andhra		
121	,	Pradesh	220	Reporting
	Kalwakurthy SWS	Andhra		
122	· · · · , · · ·	Pradesh	220	Reporting
122	Kalyandurg 220	Andhra	220	D
123		Pradesh	220	Reporting
124	Kandi 132	Andhra	122	Donortino
124		Aradesh	132	Reporting
100	Khammam - B	Andhra	220	Departing
125		Andhra	220	Reporting
176	KMPally	Bradach	220	Poporting
120		Andhra	220	Neporting
127	Kodur 220	Dradech	220	Reporting
121		Andhra	220	Neporting
128	Konasema	Pradach	400	Reporting
120		Andhra	400	neporting
120	KONASEMA	Pradach	400	Reporting
125		Andhra	+00	incporting
120	Kondapalli	Pradech	220	Reporting
10		Tuucsii	220	1 reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
	Kottur 132	Andhra		
131		Pradesh	132	Reporting
		Andhra		
132	Krishnapatnam 400kV	Pradesh	400	Reporting
	KTPS	Andhra		
133		Pradesh	220	Reporting
	KTPS VI	Andhra		- ··
134		Pradesh	400	Reporting
125	KTPS Vth stage	Andhra	220	Deventione
135		Pradesn	220	Reporting
120		Andnra	400	Donorting
130	KTPS-V	Andhra	400	Reporting
127	Kurnool	Bradach	400	Poporting
157		Andhra	400	Reporting
138	LANCO	Pradesh	220	Reporting
130		Andhra	220	Reporting
139	Local RTU	Pradesh	NA	Reporting
135		Andhra		Reporting
140	Lower Sileru	Pradesh	220	Reporting
		Andhra		neporting
141	Machkund	Pradesh	132	Reporting
		Andhra		-1 0
142	Mahaboob Nagar	Pradesh	220	Reporting
-	Mahaboobnagar 400 RCI	Andhra		
143	(Vellatoor)	Pradesh	400	Reporting
		Andhra		
144	Malkaram	Pradesh	220	Reporting
		Andhra		
145	Malkaram 400	Pradesh	400	Reporting
	Mamidanally 400	Andhra		
146	Mamuapany 400	Pradesh	400	Reporting
	Mapugur	Andhra		
147	Wallugu	Pradesh	220	Reporting
	Marakanur	Andhra		
148		Pradesh	220	Reporting
	Markapur	Andhra		
149	- 17 -	Pradesh	220	Reporting
450	Medchal	Andhra	400	Devest
150		Pradesh	132	керогтіпд
1 - 1	Minpur	Andhra	220	Done
151	-	Angliste	220	Reporting
150	Miryalaguda	Anonra	220	Poporting
132		Pradesti	220	reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
	Moulali	Andhra		
153		Pradesh	220	Reporting
		Andhra		
154	My Home Power Plant 132kV	Pradesh	132	Reporting
	Mvdukur	Andhra		
155		Pradesh	220	Reporting
450	N' Sagar LCPH	Andhra	422	Descrites
156		Pradesn	132	Reporting
157	N' Sagar PH	Bradosh	220	Poporting
157		Andhra	220	Reporting
158	N' Sagar RCPH	Pradesh	132	Reporting
150		Andhra	152	Reporting
159	Nandyal	Pradesh	220	Reporting
		Andhra		
160	Narasaraopeta	Pradesh	220	Reporting
	No. 1. A colle	Andhra		
161	Narketpalli	Pradesh	220	Reporting
		Andhra		
162	Navabharat 220kV	Pradesh	220	Reporting
	Nelloor 400	Andhra		
163		Pradesh	400	Reporting
	Nellore 220	Andhra		
164		Pradesh	220	Reporting
	Nidadhavolu 132	Andhra		
165		Pradesh	132	Reporting
166	Nidadhavolu 220KV SS	Andhra	220	Departing
100		Andhro	220	Reporting
167	Nirmal	Pradesh	220	Reporting
107	NTC (presently shifted to	riduesii	220	Reporting
	Shamshabad under Mamidinally			
100	SLDC - under integration)	Andhra	NIA	Depenting
168		Pradesn	NA	Reporting
160	Ongole	Bradosh	220	Poporting
109		Andhra	220	Reporting
170	Orient Cements 132kV	Pradesh	132	Reporting
1/0		Andhra	102	Reporting
171	Palamner 220	Pradesh	220	Reporting
		Andhra		
172	Paruchiri 220	Pradesh	220	Reporting
		Andhra		
173	PARWAD	Pradesh	220	Reporting
174	Peddapuram	Andhra	220	Reporting
S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
-----------	-----------------------------	-----------	------------------	-------------
		Pradesh		
		Andhra		
175	Pendurthy	Pradesh	220	Reporting
		Andhra		
176	Podili	Pradesh	220	Reporting
		Andhra		
177	Pratapnagar 132kV	Pradesh	132	Reporting
	Pulivondala	Andhra		
178	Pullvelluala	Pradesh	220	Reporting
	P.C. Buram	Andhra		
179	R.C.Pulalli	Pradesh	132	Reporting
		Andhra		
180	Rachagunneri 220kV	Pradesh	220	Reporting
	Paghupathpally	Andhra		
181	Ragininatripaliy	Pradesh	132	Reporting
	Pajampet	Andhra		
182	Najampet	Pradesh	220	Reporting
	Ramagiri 220/33	Andhra		
183		Pradesh	220	Reporting
	Ramagundam(Malavalanally)	Andhra		
184		Pradesh	220	Reporting
	Ramnachodavaram	Andhra		
185	Rampuenouvurun	Pradesh	220	Reporting
		Andhra		
186	Rayala Wind Power 220kV	Pradesh	220	Reporting
		Andhra		
187	RCI wind power 220kV	Pradesh	220	Reporting
	Renigunta	Andhra		
188		Pradesh	220	Reporting
	Rentachintala	Andhra		
189		Pradesh	220	Reporting
	RTPP	Andhra		_
190		Pradesh	220	Reporting
101	RTS - B	Andhra	122	Descrition
191		Pradesh	132	Reporting
102		Andhra	220	Dementing
192	RTU_CMC St	Pradesh	220	Reporting
100		Andhra	220	Denertine
193		Prauesn	220	Reporting
104	Samarlakota	Ananra	220	Donorting
194		Andhro	220	Reporting
105	carda	Anonra	220	Donorting
192	Salud		220	- Reporting
196	Sattenapally 400kV	Andhra	400	Reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
		Pradesh		
		Andhra		
197	SnadNagar	Pradesh	220	Reporting
	Shamshahad	Andhra		
198		Pradesh	220	Reporting
	Shankarnally	Andhra		
199		Pradesh	400	Reporting
	Shanuram	Andhra		
200		Pradesh	220	Reporting
	Shapurnagar	Andhra		
201		Pradesh	220	Reporting
	ShivaramPalli	Andhra		
202		Pradesh	220	Reporting
	Siddinet	Andhra		
203		Pradesh	220	Reporting
	Simhadhri	Andhra		
204		Pradesh	400	Reporting
	Sitarampatnam	Andhra		
205		Pradesh	220	Reporting
	Somavaiulapalli	Andhra		
206		Pradesh	220	Reporting
	Spectrum	Andhra		
207		Pradesh	220	Reporting
	Srisailam LBPH	Andhra		
208		Pradesh	400	Reporting
200	Srisailam PH	Andhra	222	
209		Pradesh	220	Reporting
24.0	Sullurpet	Andhra	220	
210		Pradesn	220	Reporting
211	Tadikonda 220KV	Andnra	220	Denerting
211		Andhra	220	Reporting
212	Tadipatri 220	Bradach	220	Poporting
212		Andhra	220	Reporting
212	Tadipet	Bradach	NA	Poporting
215		Andhra	NA	Reporting
21/	Tallapally	Pradoch	220	Reporting
214		Andhra	220	Reporting
215	Tandur 220 KV	Pradech	220	Reporting
		Andhra	220	incporting
216	Tekkali	Pradesh	220	Reporting
210		Andhra		
217	Undi (Bheemavaram)	Pradesh	220	Reporting
210	Linner Sileru	Andhro	220	Doporting
219	opper sileru	Anunra	220	Reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
		Pradesh		
		Andhra		
219	Vemagiri 400	Pradesh	400	Reporting
	Viiavwada	Andhra		
220	Vijaywada	Pradesh	220	Reporting
	Viiieswaram	Andhra		
221		Pradesh	220	Reporting
222	Visakhapatanam SWS	Andhra	220	Deventions
222		Pradesn	220	Reporting
222	VTPS	Andnra Pradosh	220	Reporting
225		Andhra	220	Reporting
224	VTPS400	Pradesh	400	Reporting
		Andhra		
225	VVB	Pradesh	220	Reporting
	Madakathanally	Andhra		
226	Wadekotnapany	Pradesh	220	Reporting
	Wananarthy	Andhra		
227	wanapartny	Pradesh	220	Reporting
	Warangal	Andhra		
228		Pradesh	220	Reporting
220	Yeddumailaram	Andhra	220	Depenting
229		Andhra	220	Reporting
230	Yerraguntla	Pradesh	220	Reporting
231	Alipur (Bellary)	Karnataka	220	Reporting
231	Almatti Generating Station	Karnataka	220	Reporting
232	Almatty 220	Karnataka	220	Bonorting
255	Ambawadi	Kamataka	220	Dementing
234	Anderselve 220	Karnataka	220	Reporting
235		Karnataka	220	Reporting
236	Antharasanahalli	Karnataka	220	Reporting
237	Athani	Karnataka	220	Reporting
238	Bagalkot 220	Karnataka	220	Reporting
239	BANAVIKAL 66 KV	Karnataka	66	Reporting
240	Basavana Bagewadi	Karnataka	220	Reporting
241	Begur	Karnataka	220	Reporting
242	Belgam 220 KV	Karnataka	220	Reporting
243	Bhadra	Karnataka	66	Reporting
244	Bidadi	Karnataka	220	Reporting
2/5	Bijanur	Karnataka	220	Reporting
245	DIJAPAI	Karnataka	220	Bonorting
240	DIVIIVIISPAT	Karnalaka	220	Reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
247	Bng.Metro East Division	Karnataka	220	Reporting
248	Bng.Metro Naganathpura	Karnataka	220	Reporting
249	Bng.Metro Sarjapura	Karnataka	220	Reporting
250	BTPS 220 kV	Karnataka	220	Reporting
251	BTPS 400 kV	Karnataka	400	Reporting
252	Chamrajnagar 220	Karnataka	220	Reporting
253	CHIKAMANGALORE	Karnataka	220	Reporting
254	CHIKKAGANGANAWADI 66KV	Karnataka	66	Reporting
255	Chikkamangalur 220	Karnataka	220	Reporting
256	Chikkodi	Karnataka	220	Reporting
257	Chinthamani 220	Karnataka	220	Reporting
258	Chitradurga 220	Karnataka	220	Reporting
259	CHORNUR 66 KV	Karnataka	66	Reporting
260	CR Patnnam	Karnataka	220	Reporting
261	D. G. Plant (Yelahanka)	Karnataka	66	Reporting
262	Dabuspet	Karnataka	220	Reporting
263	Davangere 220 KV	Karnataka	220	Reporting
264	Devanahalli 220	Karnataka	220	Reporting
265	DHRUVDESH	Karnataka	220	Reporting
266	Doddaballapur	Karnataka	220	Reporting
267	EPIP	Karnataka	220	Reporting
268	Gadag	Karnataka	220	Reporting
269	Ghatprabha	Karnataka	110	Reporting
270	GHATPRABHA	Karnataka	220	Reporting
271	Gopalpura	Karnataka	220	Reporting
272	Gowribidanur 220 KV	Karnataka	220	Reporting
273	Guttur (Davangere)	Karnataka	220	Reporting
274	HAL	Karnataka	220	Reporting
275	HALBURGA	Karnataka	220	Reporting
276	HANUMANTHANAGAR 66 KV	Karnataka	66	Reporting
277	HARTI	Karnataka	220	Reporting
278	Hassan	Karnataka	220	Reporting
279	Haveri 220 KV	Karnataka	220	Reporting
280	Hebbal	Karnataka	220	Reporting
281	Hiriyur 220 KV	Karnataka	220	Reporting
282	Honnali	Karnataka	220	Reporting
283	Hoody 220/400 KV	Karnataka	400	Reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
284	Hootagalli (Mysore) 220 KV	Karnataka	220	Reporting
285	Hoskote	Karnataka	220	Reporting
286	HSR Layout	Karnataka	220	Reporting
287	Hubli 220 KV	Karnataka	220	Reporting
288	Humnabad	Karnataka	220	Reporting
289	HUNASENAHALLI 66KV	Karnataka	66	Reporting
290	Indi	Karnataka	220	Reporting
291	Itagi (Hagari Bommanahalli)	Karnataka	220	Reporting
292	Jindal IPP	Karnataka	220	Reporting
293	Jog GS (MGHE)	Karnataka	110	Reporting
294	Kadakola	Karnataka	220	Reporting
295	Kadra	Karnataka	220	Reporting
296	Kadur	Karnataka	220	Reporting
297	KAIDB	Karnataka	220	Reporting
298	Kanakpura	Karnataka	220	Reporting
299	Kapnur	Karnataka	220	Reporting
300	Karwar	Karnataka	220	Reporting
301	Kavoor 220 KV	Karnataka	220	Reporting
302	KEMAR 220	Karnataka	220	Reporting
303	Kibbanahalli Cross	Karnataka	220	Reporting
304	Kodasalli	Karnataka	220	Reporting
305	Kolar 220	Karnataka	220	Reporting
306	Kollegal	Karnataka	220	Reporting
307	KRPET	Karnataka	220	Reporting
308	Kuduchi	Karnataka	220	Reporting
309	Kushtagi	Karnataka	220	Reporting
310	Linganamakki LPH	Karnataka	110	Reporting
311	Lingapur 220	Karnataka	220	Reporting
312	Lingasugur	Karnataka	220	Reporting
313	M.K.Hubli 220	Karnataka	220	Reporting
314	Madhunahalli 220	Karnataka	220	Reporting
315	Madugiri	Karnataka	220	Reporting
316	Mahalingapur	Karnataka	220	Reporting
317	Malur 220	Karnataka	220	Reporting
318	Mangalore	Karnataka	220	Reporting
319	MKHUBLI	Karnataka	220	Reporting
320	Munirabad GS	Karnataka	110	Reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
321	N.R.S. (Bangalore)	Karnataka	220	Reporting
322	Nagjhari	Karnataka	220	Reporting
323	Narendra 220	Karnataka	220	Reporting
324	NEELGUNDA	Karnataka	220	Reporting
325	Nelamangala 400	Karnataka	400	Reporting
326	NELLGUNDA	Karnataka	220	Reporting
327	NIMHANS	Karnataka	220	Reporting
328	Nittur 220	Karnataka	220	Reporting
329	Peenya 220	Karnataka	220	Reporting
330	Puttur	Karnataka	220	Reporting
331	Raichur 220	Karnataka	220	Reporting
332	Ranibennur 220	Karnataka	220	Reporting
333	Rayalseema IPP	Karnataka	110	Reporting
334	RTPS	Karnataka	400	Reporting
335	Sahapur	Karnataka	220	Reporting
336	Sedam	Karnataka	220	Reporting
337	Shahabad 220	Karnataka	220	Reporting
338	Sharavathy	Karnataka	220	Reporting
339	Shimoga 220	Karnataka	220	Reporting
340	Shiralkoppa	Karnataka	220	Reporting
341	Shivashamudram	Karnataka	66	Reporting
342	Sindhnaur	Karnataka	220	Reporting
343	Somanahalli 220	Karnataka	220	Reporting
344	Soundatti	Karnataka	220	Reporting
345	STRP	Karnataka	220	Reporting
346	Subramanyapura 220 KV	Karnataka	220	Reporting
347	Supa GS	Karnataka	110	Reporting
348	T.K. Halli	Karnataka	220	Reporting
349	Talaguppa 400	Karnataka	400	Reporting
350	Tallak	Karnataka	220	Reporting
351	Tata Power House IPP	Karnataka	110	Reporting
352	THIMMASANDRA 66 KV	Karnataka	66	Reporting
353	THYAMAGONDLU 66 KV	Karnataka	66	Reporting
354	Tubinkere	Karnataka	220	Reporting
355	UPCI	Karnataka	220	Reporting
356	Vajamangala 220	Karnataka	220	Reporting
357	Vajramati	Karnataka	220	Reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
358	Varahi	Karnataka	220	Reporting
359	Vrishbhavti(V. valley)	Karnataka	220	Reporting
360	Yerandahalli 220	Karnataka	220	Reporting
361	Arikode 220	Kerala	220	Reporting
362	Brahmapuram 220	Kerala	220	Reporting
363	BSES IPP	Kerala	220	Reporting
364	Chalakudy 110	Kerala	110	Reporting
365	Edamon 220	Kerala	220	Reporting
366	Edappon 220	Kerala	220	Reporting
367	Idamalayar 110	Kerala	110	Reporting
368	ldukki 220	Kerala	220	Reporting
369	Kakkad 110	Kerala	110	Reporting
370	Kalamassery 220	Kerala	220	Reporting
371	Kanhirode 220	Kerala	220	Reporting
372	Kaniampetta 220	Kerala	220	Reporting
373	Kanjikode 220	Kerala	220	Reporting
374	Kozhikode 220	Kerala	220	Reporting
375	Kundara 220	Kerala	220	Reporting
376	Kuttiady 110	Kerala	110	Reporting
377	Lower Periyar 220	Kerala	220	Reporting
378	Madakkathara 400/220	Kerala	400	Reporting
379	Malaparamba 220	Kerala	220	Reporting
380	Manjeswaram 110	Kerala	110	Reporting
381	MLPB	Kerala	220	Reporting
382	Mylatty 220	Kerala	220	Reporting
383	Neriamangalam 110	Kerala	110	Reporting
384	Pallivasal 66	Kerala	66	Reporting
385	Pallom 220	Kerala	220	Reporting
386	Parasala 110	Kerala	110	Reporting
387	Poringalkuttu 110	Kerala	110	Reporting
388	Pothencode 220	Kerala	220	Reporting
389	Punnapra 220	Kerala	220	Reporting
390	Sabarigiri 220	Kerala	220	Reporting
391	Sengulam 110	Kerala	110	Reporting
392	Sholayar 110	Kerala	110	Reporting
393	Shornur 220	Kerala	220	Reporting
394	Thaliparamba 220 KV	Kerala	220	Reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
395	Bahour 110/22 KV	Puducherry	110	Reporting
396	Bahour 230 KV	Puducherry	230	Reporting
397	Eripakkam 110/22 KV	Puducherry	110	Reporting
398	Kalapet 110/22 KV	Puducherry	110	Reporting
399	Karaikal 110/11 KV	Puducherry	110	Reporting
400	Korkadu 110/22 KV	Puducherry	110	Reporting
401	Kurumbapet 110/22 KV	Puducherry	110	Reporting
402	Mahe 110/11 KV	Puducherry	110	Reporting
403	Marapallam 110 /22/11 KV	Puducherry	110	Reporting
404	Pillaitheruvasal 110/11KV	Puducherry	110	Reporting
405	Sedarapet	Puducherry	110	Reporting
406	T.R.Pattanam 110/11 KV	Puducherry	110	Reporting
407	Thethampakkam 110/22 KV	Puducherry	110	Reporting
408	Thirubhuvani 110 KV	Puducherry	110	Reporting
409	Thondattham	Puducherry	230	Reporting
410	Vallianur 230/110 KV	Puducherry	230	Reporting
411	Yanam 132/11 KV	Puducherry	132	Reporting
412	Aanikadavu 230	Tamil Nadu	230	Reporting
413	Aban	Tamil Nadu	110	Reporting
414	Acharapakkam	Tamil Nadu	230	Reporting
415	Alamathy	Tamil Nadu	400	Reporting
416	Aliyar PH	Tamil Nadu	110	Reporting
417	Aliyar230	Tamil Nadu	230	Reporting
418	Amudhapuram 230	Tamil Nadu	230	Reporting
419	Arasur	Tamil Nadu	230	Reporting
420	Arkay CPP	Tamil Nadu	110	Reporting
421	Arkay IPP (Penna)	Tamil Nadu	110	Reporting
422	Arni	Tamil Nadu	230	Reporting
423	ATHIPATTU	Tamil Nadu	230	Reporting
424	Athur 230 (Deviakurchi)	Tamil Nadu	230	Reporting
425	Aurobindo IPP	Tamil Nadu	110	Reporting
426	Basin Bridge	Tamil Nadu	110	Reporting
427	Basin Bridge 230	Tamil Nadu	230	Reporting
428	BSR Micro	Tamil Nadu	110	Reporting
429	Coramandal CPP	Tamil Nadu	110	Reporting
430	Cuddalore	Tamil Nadu	230	Reporting
431	Echangodu	Tamil Nadu	230	Reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
432	Ennore TPS	Tamil Nadu	230	Reporting
433	EPVN CPP	Tamil Nadu	230	Reporting
434	Erode	Tamil Nadu	110	Reporting
435	GMR PCL IPP	Tamil Nadu	230	Reporting
436	Gobichettypalayam	Tamil Nadu	230	Reporting
437	Gumidipoondi	Tamil Nadu	230	Reporting
438	Hosur	Tamil Nadu	230	Reporting
439	Ingur	Tamil Nadu	230	Reporting
440	Kadamparai PH	Tamil Nadu	230	Reporting
441	Kadaperi	Tamil Nadu	230	Reporting
442	Karaikudi	Tamil Nadu	230	Reporting
443	Karamadi 230/110KV SS	Tamil Nadu	230	Reporting
444	KaramBayam	Tamil Nadu	230	Reporting
445	Kauvery CPP	Tamil Nadu	110	Reporting
446	Kavanoor	Tamil Nadu	NA	Reporting
447	Kayathar	Tamil Nadu	230	Reporting
448	Kilpaunk	Tamil Nadu	230	Reporting
449	Kmngalam	Tamil Nadu	230	Reporting
450	Kodaiyar PH2	Tamil Nadu	110	Reporting
451	Kodikurchi	Tamil Nadu	230	Reporting
452	Koratur	Tamil Nadu	230	Reporting
453	Kovilkalappal	Tamil Nadu	110	Reporting
454	Koyambedu	Tamil Nadu	230	Reporting
455	Koyambedu	Tamil Nadu	230	Reporting
456	Kundah PH 1	Tamil Nadu	110	Reporting
457	Kundah PH 2	Tamil Nadu	230	Reporting
458	Kundah PH 3	Tamil Nadu	230	Reporting
459	Kundah PH 4	Tamil Nadu	230	Reporting
460	Kuttalam	Tamil Nadu	110	Reporting
461	Lower Mettur PH3	Tamil Nadu	110	Reporting
462	Madurai 230	Tamil Nadu	230	Reporting
463	Madurai 400	Tamil Nadu	400	Reporting
464	Madurai North (Alagarkoil)	Tamil Nadu	230	Reporting
465	Manali	Tamil Nadu	230	Reporting
466	Mettur Auto SS	Tamil Nadu	230	Reporting
467	Mettur Dam PH	Tamil Nadu	110	Reporting
468	Mettur TPS	Tamil Nadu	230	Reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
469	Mettur Tunnel PH	Tamil Nadu	230	Reporting
470	Mosur	Tamil Nadu	230	Reporting
471	Moyar	Tamil Nadu	110	Reporting
472	MPCL IPP	Tamil Nadu	110	Reporting
473	MTPS Statge-3	Tamil Nadu	400	Reporting
474	MTPS Stg3	Tamil Nadu	230	Reporting
475	MVTN	Tamil Nadu	230	Reporting
476	Myladuthurai	Tamil Nadu	230	Reporting
477	Mylapore	Tamil Nadu	230	Reporting
478	Mylapore	Tamil Nadu	230	Reporting
	Nallamannayaickanpatti			
479	230/110KV SS	Tamil Nadu	230	Reporting
480	NCTPS STG2	Tamil Nadu	400	Reporting
481	NCTPS_STG2	Tamil Nadu	400	Reporting
482	Neyveli TS I	Tamil Nadu	230	Reporting
483	NMTPS	Tamil Nadu	230	Reporting
484	ОКМВАМ	Tamil Nadu	230	Reporting
485	Orgadam	Tamil Nadu	230	Reporting
486	P Chandai	Tamil Nadu	230	Reporting
487	Palladom	Tamil Nadu	230	Reporting
488	Paramkudi	Tamil Nadu	230	Reporting
489	Parsons' Valley	Tamil Nadu	230	Reporting
490	Penna Electrcity IPP	Tamil Nadu	230	Reporting
491	Perambulur	Tamil Nadu	230	Reporting
492	Periyar PH	Tamil Nadu	110	Reporting
493	Ponnapuram	Tamil Nadu	230	Reporting
494	PP Nallur IPP	Tamil Nadu	230	Reporting
495	PSQ	Tamil Nadu	230	Reporting
496	Pudukottai	Tamil Nadu	230	Reporting
497	Pugalur	Tamil Nadu	230	Reporting
498	Pushep	Tamil Nadu	230	Reporting
499	Pykara PH	Tamil Nadu	110	Reporting
500	Regnathpuram	Tamil Nadu	230	Reporting
501	S.R.Pudur	Tamil Nadu	230	Reporting
502	Sadayanpallayam 230	Tamil Nadu	230	Reporting
503	Sai_Regency CPP	Tamil Nadu	100	Reporting
504	Salem 230	Tamil Nadu	230	Reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
505	Salem 400	Tamil Nadu	400	Reporting
506	Samayapuram	Tamil Nadu	230	Reporting
507	Sanganeri	Tamil Nadu	230	Reporting
508	Sathur (Anuppankulam)	Tamil Nadu	230	Reporting
509	Sembatty	Tamil Nadu	230	Reporting
510	Sembiyam 110 KV	Tamil Nadu	110	Reporting
511	Shoazanganallur230	Tamil Nadu	230	Reporting
512	Sholayar PH 1	Tamil Nadu	110	Reporting
513	Singarapet	Tamil Nadu	230	Reporting
514	SIPCOT	Tamil Nadu	230	Reporting
515	Siruseri 230	Tamil Nadu	230	Reporting
516	SP Koil	Tamil Nadu	230	Reporting
517	SPCL IPP	Tamil Nadu	230	Reporting
518	Sriperumbudur	Tamil Nadu	400	Reporting
519	STCMS IPP	Tamil Nadu	230	Reporting
520	Sterlite CPP	Tamil Nadu	230	Reporting
521	Sungavarchatram 400	Tamil Nadu	400	Reporting
522	Taramani	Tamil Nadu	230	Reporting
523	TCPL IPP	Tamil Nadu	110	Reporting
524	Thanjore	Tamil Nadu	230	Reporting
525	Theni	Tamil Nadu	230	Reporting
526	Thiruchengode	Tamil Nadu	230	Reporting
527	Thiruvalam	Tamil Nadu	230	Reporting
528	Thiruvarur	Tamil Nadu	230	Reporting
529	Thudiyalur	Tamil Nadu	230	Reporting
530	Tondiarpet	Tamil Nadu	230	Reporting
531	Trichy 230	Tamil Nadu	230	Reporting
532	Trichy 400	Tamil Nadu	400	Reporting
533	Tuticorin Auto	Tamil Nadu	230	Reporting
534	Tuticorin TPS	Tamil Nadu	230	Reporting
535	TV Malai	Tamil Nadu	230	Reporting
536	Udaythoor	Tamil Nadu	230	Reporting
537	Udumalpet 230	Tamil Nadu	230	Reporting
538	Udumalpet 400	Tamil Nadu	400	Reporting
539	ILUU	Tamil Nadu	230	Reporting
540	Vazhuthur	Tamil Nadu	110	Reporting
541	Veerapuram	Tamil Nadu	230	Reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
542	Villupuram 230	Tamil Nadu	230	Reporting
543	Vinnamangalam	Tamil Nadu	230	Reporting
544	Vyasarpadi 110 KV	Tamil Nadu	110	Reporting

List of RTUs in North-Eastern Region

S. No	Name/Code of BTU or SAS	Ownershin	Voltage	Status
1		Powergrid	NA	Reporting
2		Powergrid	NA	Reporting
2	BALIPARA	Powergrid	NA	Reporting
1	BONGAIGAON	Powergrid	NA	Reporting
5	BYRNIHAT	Powergrid	NA	Reporting
6		Powergrid	NA	Reporting
7	HAFLONG	Powergrid	NA	Reporting
/ 0		Powergrid	NA	Reporting
0		Powergrid	NA	Reporting
9		Powergrid	NA	Reporting
10		Powergrid	NA	Reporting
11		Powergrid	NA	Reporting
12	KOLASIB	Powergrid	NA	Reporting
13	KUMARGHAT	Powergrid	NA	Reporting
14	LOCAL RTU	Powergrid	NA	Reporting
15	LOKTAK	NHPC	NA	Reporting
16	MARIANI	Powergrid	NA	Reporting
17	MISA	Powergrid	NA	Reporting
		Central		
18	PALATANA	Sector	NA	Reporting
19	SALAKATI	Powergrid	NA	Reporting
20	SILCHAR	Powergrid	NA	Reporting
21	ZIRO	Powergrid	NA	Reporting
22	AGARTALA GAS/RC NAGAR	NEEPCO	NA	Reporting
23	DOYANG	NEEPCO	NA	Reporting
24	KATHALGURI	NEEPCO	NA	Reporting
25	KHANDONG	NEEPCO	NA	Reporting
26	KOPILI	NEEPCO	NA	Reporting
27	KOPILI EXT	NEEPCO	NA	Reporting
28	RANGANADI	NEEPCO	NA	Reporting
				Not
29	AGIA	Assam	NA	Reporting
30	APM (JOGIGHOPA)	Assam	NA	Reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
31	B. CHARIALI	Assam	NA	Reporting
32	BOKAJAN	Assam	NA	Reporting
33	ВОКАКНАТ	Assam	NA	Reporting
34	воко	Assam	NA	Not Reporting
35	BONGAIGAON (BTPS)	Assam	NA	Not Reporting
36	BORNAGAR	Assam	NA	Reporting
37	CHANDRAPUR	Assam	NA	Reporting
38	DEPOTA (TEZPUR)	Assam	NA	Not Reporting
39	DHALIGAON	Assam	NA	Reporting
40	DHEMAJI	Assam	NA	Reporting
				Not
41	DIBRUGARH	Assam	NA	Reporting
42	DIPHU	Assam	NA	Reporting
43	DISPUR	Assam	NA	Reporting
44	DOOMDOOMA (RUPAI)	Assam	NA	Reporting
45	DULLAVCHERA	Assam	NA	Not Reporting
46	GAURIPUR	Assam	NA	Reporting
47	GOHPUR	Assam	NA	Reporting
48	GOLAGHAT NEW	Assam	NA	Reporting
49	GOLAGHAT OLD	Assam	NA	Reporting
50	GOSSAIGAON	Assam	NA	Reporting
51	HAFLONG	Assam	NA	Reporting
52	JAGIROAD (BAGHJAP)	Assam	NA	Reporting
52		A		Not
53		Assam	NA	Reporting
54		Assam	NA	Reporting
55	KAHELIPARA	Assam	NA	Reporting
56	Kahelipaka loc	Assam	NA	Reporting
57	KARBI LONGPI	Assam	NA	Reporting
58	LAKWA (LTPS)	Assam	NA	Not Reporting
59	LANKA (SANKARDEVNAGAR)	Assam	NA	Reporting
60	MAJULI	Assam	NA	Reporting
61	MARGHERITA	Assam	NA	Reporting
62	MARIANI	Assam	NA	Not Reporting

S. No.	Name/Code of RTU or SAS	Ownership	Voltage level	Status
63	MORAN	Assam	NA	Reporting
64	NALBARI	Assam	NA	Reporting
				Not
65	NAMRUP PS	Assam	NA	Reporting
66	NARANGI	Assam	NA	Reporting
67	NAZIRA	Assam	NA	Reporting
68	NORTH LAKHIMPUR	Assam	NA	Reporting
69	PAILAPOOL	Assam	NA	Reporting
70	PANCHGRAM (BADARPUR)	Assam	NA	Reporting
71	PANCHGRAM OLD	Assam	NA	Reporting
				Not
72	RANGIA	Assam	NA	Reporting
73	ROWTA	Assam	NA	Reporting
				Not
74	SAMAGURI	Assam	NA	Reporting
				Not
75	SARUSAJAI	Assam	NA	Reporting
76	SIBSAGAR	Assam	NA	Reporting
77	SILCHAR (SRIKONA)	Assam	NA	Reporting
78	SIPAJHAR	Assam	NA	Reporting
79	SISHUGRAM (AMINGAON)	Assam	NA	Reporting
				Not
80	TINSUKIA	Assam	NA	Reporting
				Not
81	Dimapur, Nagaland	Manipur	NA	Reporting
0.7	Increhel	Maninum	NLA	Not
82	Imphai	Ivianipur	NA	Reporting
02	Kakehing	Maninur	NA	NOL
05	Kakeling	wampu	INA	Not
84	Karong	Manipur	NA	Reporting
				Not
85	Kohima, Nagaland	Manipur	NA	Reporting
				Not
86	Mokokchung, Nagaland	Manipur	NA	Reporting
				Not
87	Ningthoukong	Manipur	NA	Reporting
88	EPIP-1	Meghalaya	NA	Reporting
89	EPIP-2	Meghalaya	NA	Reporting
				Not
90	KHLEIHRIAT	Meghalaya	NA	Reporting
91	KILLING	Meghalaya	NA	Not

S.		O	Voltage	Chattara
NO.	Name/Code of RTU or SAS	Ownersnip	level	Status
				Reporting
0.2		Maghalaya	NIA	Not
92		Maghalaya	NA	Reporting
93		Meghalaya	NA	Reporting
94	MAPHILONG	Meghalaya	NA	Reporting
95	MAWLAI	Meghalaya	NA	Reporting
96	NEHU	Meghalaya	NA	Reporting
97	NEIGRIHMS	Meghalaya	NA	Reporting
98	UMIAM	Meghalaya	NA	Reporting
99	UMIAM I	Meghalaya	NA	Reporting
				Not
100	UMIAM II	Meghalaya	NA	Reporting
101	UMIAM III	Meghalaya	NA	Reporting
102	UMIAM IV	Meghalaya	NA	Reporting
103	UMTRU	Meghalaya	NA	Reporting
				Not
104	AIZAWL	Mizoram	NA	Reporting
105	AGARTALA	Tripura	NA	Reporting
106	AMBASA	Tripura	NA	Reporting
107	BADHARGHAT	Tripura	NA	Reporting
108	BARAMURA	Tripura	NA	Reporting
109	BUDHJUNGNAGAR	Tripura	NA	Reporting
110	DHALABILL	Tripura	NA	Reporting
				Not
111	DHARMANAGAR	Tripura	NA	Reporting
112	GAMAITILA	Tripura	NA	Reporting
113	GOURNAGAR	Tripura	NA	Reporting
				Not
114	GUMTI	Tripura	NA	Reporting
115	JIRANIA	Tripura	NA	Reporting
116	KAMALPUR	Tripura	NA	Reporting
				Not
117	PKBARI	Tripura	NA	Reporting
118	ROKHIA	Tripura	NA	Reporting
119	UDAIPUR	Tripura	NA	Reporting

Appendix 4

Useful references for SE

- 1. Fred C. Schweppe and J. Wildes, "Power System Static-State Estimation Part I: Exact Model", IEEE Trans on Power Apparatus and Systems, vol. PAS-89, no. 1, January 1970.
- 2. Fred C. Schweppe and J. Wildes, "Power System Static-State Estimation Part II: Approximate Model", IEEE Trans on Power Apparatus and Systems, vol. PAS-89, no. 1, January 1970.
- 3. Fred C. Schweppe and J. Wildes, "Power System Static-State Estimation Part I: Implementation", IEEE Trans on Power Apparatus and Systems, vol. PAS-89, no.1, January 1970.
- 4. Chapter 15, State Estimation of Power Systems, "Power System Analysis" by John J. Grainger and William D. Stevenson, Jr..
- 5. Ali Abur and Antonio Gómez Expósito, 'Power System State Estimation: Theory and Implementation', Marcel Dekker, Inc., Publishers, 2004.
- Chapter 12, Introduction to State Estimation in Power Systems, "Power Generation, Operation, and Control" 2nd edition by Allen J. Wood and Bruce F. Woollenberg, John Wiley & Sons, Publishers, 2012.
- 7. A. Monticelli,'State Estimation in Electric Power Systems A Generalized Approach', Kluwer Academic Publishers, 1999.
- 8. Dy-Liacco, Tomas, "Control centers are here to stay". Computer Applications in Power (Institute of Electrical and Electronics Engineers) Vol 15, No. 4, pp 18–23, Oct 2002.
- 9. Felix F. Wu, Khosrow Moslehi and Anjan Bose, "Power System Control Centers: Past, Present, and Future", Proceedings of IEEE, Vol. 93, No. 11, pp 1890-1908, November, 2005.