Study on Grid Support Services from BESS for Indian DISCOMS

Commissioned by: Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH

Presenter: Peter-Philipp Schierhorn (Energynautics GmbH)

26th August 2022

Implemented by

Contact:

p.schierhorn@energynautics.com

Agenda

- 1. Overview on PV and BESS Services
- 2. Case Study of Indian DISCOM BRPL
 - Case Reduction of Transformer Loading
 - Case 2 Balancing of Scheduled and Actual Consumption
 - Case 3 Energy Shifting
- 3. Conclusions and Recommendations

Overview on PV and BESS Services

Summary of Services Analysed for BRPL

Level of Analysis	Grid Support Service	Economic value for DISCOMS	Service provided by
DT Level	Load Peak Reduction	Distribution assets upgrade deferral	PV and/or BESS
	PV Peak Reduction	Distribution assets upgrade deferral	BESS
	Voltage support	Improved Voltage	PV and/or BESS
	Reactive Power Provision	Avoided reactive power balance penalties	PV and/or BESS
	Reduction of Losses	Avoided cost of power losses	PV systems
DISCOM 3	Balancing	Avoided Deviation charges	BESS
	Energy shifting	Avoided PPA variable costs	BESS
	Power demand reduction by PV	Avoided PPA variable costs	PV systems
	Contribution to DISCOMS' RPO	Avoided purchase cost of REC	PV systems

Reduction of Transformer Loading for Assets Upgrade Deferral

→ Transformer lifetime increased by 4 years

Economic Analysis Results: Grid Asset Upgrade Deferral

Cost Comparison BESS vs. Transformer

Cost in € for 1 MW System

Balancing of Scheduled and Actual Consumption to avoid Deviation-Charges

Economic Analysis Results: Balancing avoiding Deviation Charges

Sensitivity Analysis Results on Balancing

Sensitivity Analysis
BESS Installation Cost impact on Net Present Sum for a 2MWh BESS
SERVICE: DSM Charge Reduction

Energy Shifting to avoid PPA costs

Economic Analysis Results: Energy Shifting

→ No business case due to low price spread!

Economic Analysis Results: Energy Shifting

Yearly savings are lower than maintenance costs.

Overview: Economic Analysis of Battery Storage

Level of Analysis	Grid Support Service	Installed Battery		Yearly	Battery Installation	Net Present	
		C-Rate	Max. Power	Capacity	Savings [EUR]	Costs	Sum [EUR]
DT Level	Load Pereduction	lany	use d	kWh	250	59,600	- 65,800
	PV Peak Reduction	0.5	100 kW	200 m	Put no Ł	59,600 PUSID =	- 54,200
DISCOM Level	Balancing	1	20 MW	20 MWh	445,200	5,960,000	- 65,800 - 54,200 Cases!
3	Energy shifting	1	20 MW	20 MWh	41,600	5,960,000	- 6,443,000

Conclusions and Recommendations on BESS in Distribution Systems

There are many benefits for DISCOMS to install BESS in their distribution system....

...but on the SHORT TERM, handle with care:

- No real business case for DISCOMS has been identified!
- Operation costs might even be higher than savings!
- BESS will produce additional losses in the system!
- Individual situation needs to be evaluated, it is not yet the time for a massive rollout.

...and on LONG TERM, with a massive increase of renewable energies, storage will be inevitable, thus storage should be supported:

 A regulatory and market framework should be developed including among others the definition of tariff structure, incentives, grid connectivity and operational norms.

Thank you for your attention!

Contact

Peter-Philipp Schierhorn
Senior Engineer, Energynautics GmbH
p.schierhorn@energynautics.com

Workshop on Technical Standards for DER Integration & Grid Integration Challenges of Rooftop PV and Mitigating Solutions

https://www.facebook.com/gizprofile/

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Registered offices Bonn and Eschborn

Friedrich-Ebert-Allee 36 + 40 53113 Bonn, Germany T +49 228 44 60 - 0 F +49 228 44 60 - 17 66

E info@giz.de I www.giz.de

Dag-Hammarskjöld-Weg 1 - 5 65760 Eschborn, Germany T +49 61 96 79 - 0 F +49 61 96 79 - 11 15

